Holographic detection of AIS real-time signals based on sparse representation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Shuaiheng Huai, Shufang Zhang, Jingbo Zhang, Keyu Huang

ABSTRACT

To use the existing Automatic Identification System (AIS) shore stations for positioning so that the AIS can be used as an additional land-based positioning system for coastal vessels is a cutting-edge research topic, responding to the call of the International Maritime Organization (IMO). In order to use the ship-borne AIS for positioning function, a holographic detection of AIS real-time signal based on sparse representation is presented in this paper. Considering the working environment and the requirement of AIS real-time signal processing, a novel fast noise resistance Orthogonal Matching Pursuit (OMP) algorithm is presented. Furthermore, the choice and detection of the timestamp of the reconstructed signal is analyzed and carried out which will be used in the ranging system. The experiment results indicate that the proposed fast noise resistance OMP algorithm can greatly reduce the processing time, and the difference in processing time increases with the number of iterations. The improvement in noise immunity is also obvious, and the error rate reduces at about 9% under the same SNR. The timestamp of the reconstructed signals can be detected successfully. It shows that the holographic detection of AIS real-time signal is achieved satisfactorily. More... »

PAGES

84

References to SciGraph publications

  • 2018-12. A novel sparse representation algorithm for AIS real-time signals in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13638-019-1404-6

    DOI

    http://dx.doi.org/10.1186/s13638-019-1404-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113205216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dalian Maritime University", 
              "id": "https://www.grid.ac/institutes/grid.440686.8", 
              "name": [
                "Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huai", 
            "givenName": "Shuaiheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dalian Maritime University", 
              "id": "https://www.grid.ac/institutes/grid.440686.8", 
              "name": [
                "Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Shufang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dalian Maritime University", 
              "id": "https://www.grid.ac/institutes/grid.440686.8", 
              "name": [
                "Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jingbo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Otto-von-Guericke University Magdeburg", 
              "id": "https://www.grid.ac/institutes/grid.5807.a", 
              "name": [
                "The Faculty of Electrical Engineering and Information Technology, Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Keyu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2897166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004613392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s151128574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022561833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s140917376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024420322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.258082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061228470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2006.881969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061641581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450037906x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s17040736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084437414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s17051183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085462706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.oceaneng.2017.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091974981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094290801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/acssc.1993.342465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095254645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18020617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101138143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s18040991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101769349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-018-1244-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107079691", 
              "https://doi.org/10.1186/s13638-018-1244-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "To use the existing Automatic Identification System (AIS) shore stations for positioning so that the AIS can be used as an additional land-based positioning system for coastal vessels is a cutting-edge research topic, responding to the call of the International Maritime Organization (IMO). In order to use the ship-borne AIS for positioning function, a holographic detection of AIS real-time signal based on sparse representation is presented in this paper. Considering the working environment and the requirement of AIS real-time signal processing, a novel fast noise resistance Orthogonal Matching Pursuit (OMP) algorithm is presented. Furthermore, the choice and detection of the timestamp of the reconstructed signal is analyzed and carried out which will be used in the ranging system. The experiment results indicate that the proposed fast noise resistance OMP algorithm can greatly reduce the processing time, and the difference in processing time increases with the number of iterations. The improvement in noise immunity is also obvious, and the error rate reduces at about 9% under the same SNR. The timestamp of the reconstructed signals can be detected successfully. It shows that the holographic detection of AIS real-time signal is achieved satisfactorily.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13638-019-1404-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050477", 
            "issn": [
              "1687-1472", 
              "1687-1499"
            ], 
            "name": "EURASIP Journal on Wireless Communications and Networking", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Holographic detection of AIS real-time signals based on sparse representation", 
        "pagination": "84", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13638-019-1404-6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fea887b0c3180974131a8046443d6a160dcdbf74a1602dc3e02934feb2ed968c"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113205216"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13638-019-1404-6", 
          "https://app.dimensions.ai/details/publication/pub.1113205216"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13638-019-1404-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1404-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1404-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1404-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1404-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13638-019-1404-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2aa375015f9e451cb8d7fe5aa067dcb0
    4 schema:citation sg:pub.10.1186/s13638-018-1244-9
    5 https://doi.org/10.1016/j.oceaneng.2017.09.022
    6 https://doi.org/10.1109/78.258082
    7 https://doi.org/10.1109/acssc.1993.342465
    8 https://doi.org/10.1109/cvpr.2005.160
    9 https://doi.org/10.1109/tip.2006.881969
    10 https://doi.org/10.1137/s003614450037906x
    11 https://doi.org/10.1145/2897166
    12 https://doi.org/10.3390/s140917376
    13 https://doi.org/10.3390/s151128574
    14 https://doi.org/10.3390/s17040736
    15 https://doi.org/10.3390/s17051183
    16 https://doi.org/10.3390/s18020617
    17 https://doi.org/10.3390/s18040991
    18 schema:datePublished 2019-12
    19 schema:datePublishedReg 2019-12-01
    20 schema:description To use the existing Automatic Identification System (AIS) shore stations for positioning so that the AIS can be used as an additional land-based positioning system for coastal vessels is a cutting-edge research topic, responding to the call of the International Maritime Organization (IMO). In order to use the ship-borne AIS for positioning function, a holographic detection of AIS real-time signal based on sparse representation is presented in this paper. Considering the working environment and the requirement of AIS real-time signal processing, a novel fast noise resistance Orthogonal Matching Pursuit (OMP) algorithm is presented. Furthermore, the choice and detection of the timestamp of the reconstructed signal is analyzed and carried out which will be used in the ranging system. The experiment results indicate that the proposed fast noise resistance OMP algorithm can greatly reduce the processing time, and the difference in processing time increases with the number of iterations. The improvement in noise immunity is also obvious, and the error rate reduces at about 9% under the same SNR. The timestamp of the reconstructed signals can be detected successfully. It shows that the holographic detection of AIS real-time signal is achieved satisfactorily.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N73629e866bdb4eab8d54e4a6e98f36d1
    25 N7bc3d16387814f3890e9b5be7d16732c
    26 sg:journal.1050477
    27 schema:name Holographic detection of AIS real-time signals based on sparse representation
    28 schema:pagination 84
    29 schema:productId N4b3251df9497445a8a049f00a7ab02a4
    30 Nb1fa961198da45d0822eafa7b933c471
    31 Ncca95998512c42c4802a1af2ebf4d4a1
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113205216
    33 https://doi.org/10.1186/s13638-019-1404-6
    34 schema:sdDatePublished 2019-04-15T09:24
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nbc5e19bdc4de40f3afea5378f79ccc8c
    37 schema:url https://link.springer.com/10.1186%2Fs13638-019-1404-6
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N151c17f3a8c3434c91297d25ede24499 schema:affiliation https://www.grid.ac/institutes/grid.440686.8
    42 schema:familyName Zhang
    43 schema:givenName Shufang
    44 rdf:type schema:Person
    45 N2aa375015f9e451cb8d7fe5aa067dcb0 rdf:first N94f3ab8c65724952b2b6460f5c04d4e2
    46 rdf:rest N86d93730dba749b88f73a2635824a564
    47 N45061d90559f47a58ac55995b6765021 schema:affiliation https://www.grid.ac/institutes/grid.5807.a
    48 schema:familyName Huang
    49 schema:givenName Keyu
    50 rdf:type schema:Person
    51 N4b3251df9497445a8a049f00a7ab02a4 schema:name readcube_id
    52 schema:value fea887b0c3180974131a8046443d6a160dcdbf74a1602dc3e02934feb2ed968c
    53 rdf:type schema:PropertyValue
    54 N73629e866bdb4eab8d54e4a6e98f36d1 schema:volumeNumber 2019
    55 rdf:type schema:PublicationVolume
    56 N7bc3d16387814f3890e9b5be7d16732c schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 N86d93730dba749b88f73a2635824a564 rdf:first N151c17f3a8c3434c91297d25ede24499
    59 rdf:rest Na84e33af2c8d4556b7ed0e428e0d58a5
    60 N94f3ab8c65724952b2b6460f5c04d4e2 schema:affiliation https://www.grid.ac/institutes/grid.440686.8
    61 schema:familyName Huai
    62 schema:givenName Shuaiheng
    63 rdf:type schema:Person
    64 N9c8c8421be744bf687fab8fdbe044c64 rdf:first N45061d90559f47a58ac55995b6765021
    65 rdf:rest rdf:nil
    66 Na84e33af2c8d4556b7ed0e428e0d58a5 rdf:first Nfca2fd7d5cdf465c87a2c128fc98ed57
    67 rdf:rest N9c8c8421be744bf687fab8fdbe044c64
    68 Nb1fa961198da45d0822eafa7b933c471 schema:name dimensions_id
    69 schema:value pub.1113205216
    70 rdf:type schema:PropertyValue
    71 Nbc5e19bdc4de40f3afea5378f79ccc8c schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Ncca95998512c42c4802a1af2ebf4d4a1 schema:name doi
    74 schema:value 10.1186/s13638-019-1404-6
    75 rdf:type schema:PropertyValue
    76 Nfca2fd7d5cdf465c87a2c128fc98ed57 schema:affiliation https://www.grid.ac/institutes/grid.440686.8
    77 schema:familyName Zhang
    78 schema:givenName Jingbo
    79 rdf:type schema:Person
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1050477 schema:issn 1687-1472
    87 1687-1499
    88 schema:name EURASIP Journal on Wireless Communications and Networking
    89 rdf:type schema:Periodical
    90 sg:pub.10.1186/s13638-018-1244-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107079691
    91 https://doi.org/10.1186/s13638-018-1244-9
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.oceaneng.2017.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091974981
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1109/acssc.1993.342465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095254645
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1109/cvpr.2005.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094290801
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1137/s003614450037906x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877747
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1145/2897166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004613392
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.3390/s140917376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024420322
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.3390/s151128574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022561833
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.3390/s17040736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084437414
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.3390/s17051183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085462706
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.3390/s18020617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101138143
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.3390/s18040991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101769349
    118 rdf:type schema:CreativeWork
    119 https://www.grid.ac/institutes/grid.440686.8 schema:alternateName Dalian Maritime University
    120 schema:name Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China
    121 rdf:type schema:Organization
    122 https://www.grid.ac/institutes/grid.5807.a schema:alternateName Otto-von-Guericke University Magdeburg
    123 schema:name The Faculty of Electrical Engineering and Information Technology, Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106, Magdeburg, Germany
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...