Quantitative social relations based on trust routing algorithm in opportunistic social network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Genghua Yu, Zhi Gang Chen, Jia Wu, Jian Wu

ABSTRACT

The trust model is widely used in the opportunistic social network to solve the problem of malicious nodes and information flooding. The previous method judges whether the node is a cooperative node through the identity authentication, forwarding capability, or common social attribute of the destination node. In real applications, this information does not have integrity and does not take into account the characteristics and dynamic adaptability of nodes, network structures, and the transitivity of social relationships between nodes. Therefore, it may not be effective in solving node non-cooperation problems and improving transmission success rate. To address this problem, the proposed node social features relationship evaluation algorithm (NSFRE) establishes a fuzzy similarity matrix based on various features of nodes. Each node continuously and iteratively deletes the filtered feature attributes to form a multidimensional similarity matrix according to the confidence level and determines the weights under different feature attributes. Then, the social relations of nodes are further quantified. The experimental results show that, compared with the traditional routing algorithm, NSFRE algorithm can effectively improve the transmission success rate, reduce transmission delay, ensure the safe and reliable transmission of information in the network, and require low buffer space and computing capacity. More... »

PAGES

83

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13638-019-1397-1

DOI

http://dx.doi.org/10.1186/s13638-019-1397-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113205215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Computer Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Genghua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Computer Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhi Gang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Computer Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Computer Science and Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.90.012801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.012801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1015467.1015484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042134783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cc.2015.7114058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061256618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cc.2015.7114058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061256618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2016.2550530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061339814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tetc.2016.2586192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mnet.2017.1700030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091035389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2017.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092327408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infocom.2006.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093562190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.2016.7510835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093738874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccs.2016.7833575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093848825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccnc.2015.7069461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093919636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cyberc.2009.5342205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095161380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cmc.2010.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095618104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ciapp.2017.8167194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099626992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-017-5191-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100076597", 
          "https://doi.org/10.1007/s11277-017-5191-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2873905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107415957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2878552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108003382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/sym10110600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108057463"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The trust model is widely used in the opportunistic social network to solve the problem of malicious nodes and information flooding. The previous method judges whether the node is a cooperative node through the identity authentication, forwarding capability, or common social attribute of the destination node. In real applications, this information does not have integrity and does not take into account the characteristics and dynamic adaptability of nodes, network structures, and the transitivity of social relationships between nodes. Therefore, it may not be effective in solving node non-cooperation problems and improving transmission success rate. To address this problem, the proposed node social features relationship evaluation algorithm (NSFRE) establishes a fuzzy similarity matrix based on various features of nodes. Each node continuously and iteratively deletes the filtered feature attributes to form a multidimensional similarity matrix according to the confidence level and determines the weights under different feature attributes. Then, the social relations of nodes are further quantified. The experimental results show that, compared with the traditional routing algorithm, NSFRE algorithm can effectively improve the transmission success rate, reduce transmission delay, ensure the safe and reliable transmission of information in the network, and require low buffer space and computing capacity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13638-019-1397-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050477", 
        "issn": [
          "1687-1472", 
          "1687-1499"
        ], 
        "name": "EURASIP Journal on Wireless Communications and Networking", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Quantitative social relations based on trust routing algorithm in opportunistic social network", 
    "pagination": "83", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13638-019-1397-1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5c258af6306e67df51811d418d18232cb651a29362b4ab77fd799844f96300a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113205215"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13638-019-1397-1", 
      "https://app.dimensions.ai/details/publication/pub.1113205215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56185_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13638-019-1397-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1397-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1397-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1397-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1397-1'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13638-019-1397-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb6b42c4ac8464d0bbb515090250f53ea
4 schema:citation sg:pub.10.1007/s11277-017-5191-2
5 https://doi.org/10.1016/j.comnet.2017.10.005
6 https://doi.org/10.1103/physreve.90.012801
7 https://doi.org/10.1109/access.2018.2873905
8 https://doi.org/10.1109/access.2018.2878552
9 https://doi.org/10.1109/cc.2015.7114058
10 https://doi.org/10.1109/ciapp.2017.8167194
11 https://doi.org/10.1109/cmc.2010.83
12 https://doi.org/10.1109/cyberc.2009.5342205
13 https://doi.org/10.1109/icc.2016.7510835
14 https://doi.org/10.1109/iccnc.2015.7069461
15 https://doi.org/10.1109/iccs.2016.7833575
16 https://doi.org/10.1109/infocom.2006.228
17 https://doi.org/10.1109/jsyst.2016.2550530
18 https://doi.org/10.1109/mnet.2017.1700030
19 https://doi.org/10.1109/tetc.2016.2586192
20 https://doi.org/10.1145/1015467.1015484
21 https://doi.org/10.3390/sym10110600
22 schema:datePublished 2019-12
23 schema:datePublishedReg 2019-12-01
24 schema:description The trust model is widely used in the opportunistic social network to solve the problem of malicious nodes and information flooding. The previous method judges whether the node is a cooperative node through the identity authentication, forwarding capability, or common social attribute of the destination node. In real applications, this information does not have integrity and does not take into account the characteristics and dynamic adaptability of nodes, network structures, and the transitivity of social relationships between nodes. Therefore, it may not be effective in solving node non-cooperation problems and improving transmission success rate. To address this problem, the proposed node social features relationship evaluation algorithm (NSFRE) establishes a fuzzy similarity matrix based on various features of nodes. Each node continuously and iteratively deletes the filtered feature attributes to form a multidimensional similarity matrix according to the confidence level and determines the weights under different feature attributes. Then, the social relations of nodes are further quantified. The experimental results show that, compared with the traditional routing algorithm, NSFRE algorithm can effectively improve the transmission success rate, reduce transmission delay, ensure the safe and reliable transmission of information in the network, and require low buffer space and computing capacity.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf Naf3ba1b012e84c5ea5a8200bf48aa386
29 Nb865078ee5b841908e89dbe01c578d7d
30 sg:journal.1050477
31 schema:name Quantitative social relations based on trust routing algorithm in opportunistic social network
32 schema:pagination 83
33 schema:productId N4d9d2518a7d4476aa81041142720db6d
34 N57affebffc454b95b13d05357abb3f54
35 N6d972f813ffd470cba8836715ccada93
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113205215
37 https://doi.org/10.1186/s13638-019-1397-1
38 schema:sdDatePublished 2019-04-15T09:23
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb5cec018da734b6ca7cb3641f1ed9d93
41 schema:url https://link.springer.com/10.1186%2Fs13638-019-1397-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N20af1cf358eb49b99a4150edfc2949c3 rdf:first Nd072e8ac5a4a4d53a29adfb1e5db4a7f
46 rdf:rest rdf:nil
47 N29525e1789a4427d995a3984806690c5 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
48 schema:familyName Yu
49 schema:givenName Genghua
50 rdf:type schema:Person
51 N4d9d2518a7d4476aa81041142720db6d schema:name readcube_id
52 schema:value a5c258af6306e67df51811d418d18232cb651a29362b4ab77fd799844f96300a
53 rdf:type schema:PropertyValue
54 N57affebffc454b95b13d05357abb3f54 schema:name dimensions_id
55 schema:value pub.1113205215
56 rdf:type schema:PropertyValue
57 N63b9e20baeef477dbc9468cbdfeac106 rdf:first N88d59437ae444a0db72d001cefa3a90c
58 rdf:rest Nb53d8cb05eff497c825906cbac6a9442
59 N6d972f813ffd470cba8836715ccada93 schema:name doi
60 schema:value 10.1186/s13638-019-1397-1
61 rdf:type schema:PropertyValue
62 N88d59437ae444a0db72d001cefa3a90c schema:affiliation https://www.grid.ac/institutes/grid.216417.7
63 schema:familyName Chen
64 schema:givenName Zhi Gang
65 rdf:type schema:Person
66 Naf3ba1b012e84c5ea5a8200bf48aa386 schema:volumeNumber 2019
67 rdf:type schema:PublicationVolume
68 Nb53d8cb05eff497c825906cbac6a9442 rdf:first Nef2bf04b76494bcaa0f7c9f76c7ed8c9
69 rdf:rest N20af1cf358eb49b99a4150edfc2949c3
70 Nb5cec018da734b6ca7cb3641f1ed9d93 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb6b42c4ac8464d0bbb515090250f53ea rdf:first N29525e1789a4427d995a3984806690c5
73 rdf:rest N63b9e20baeef477dbc9468cbdfeac106
74 Nb865078ee5b841908e89dbe01c578d7d schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nd072e8ac5a4a4d53a29adfb1e5db4a7f schema:affiliation https://www.grid.ac/institutes/grid.216417.7
77 schema:familyName Wu
78 schema:givenName Jian
79 rdf:type schema:Person
80 Nef2bf04b76494bcaa0f7c9f76c7ed8c9 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
81 schema:familyName Wu
82 schema:givenName Jia
83 rdf:type schema:Person
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:journal.1050477 schema:issn 1687-1472
91 1687-1499
92 schema:name EURASIP Journal on Wireless Communications and Networking
93 rdf:type schema:Periodical
94 sg:pub.10.1007/s11277-017-5191-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100076597
95 https://doi.org/10.1007/s11277-017-5191-2
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.comnet.2017.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092327408
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.90.012801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191675
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/access.2018.2873905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107415957
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/access.2018.2878552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108003382
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/cc.2015.7114058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061256618
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/ciapp.2017.8167194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099626992
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cmc.2010.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095618104
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/cyberc.2009.5342205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095161380
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icc.2016.7510835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093738874
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/iccnc.2015.7069461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093919636
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/iccs.2016.7833575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093848825
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/infocom.2006.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093562190
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/jsyst.2016.2550530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061339814
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/mnet.2017.1700030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091035389
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tetc.2016.2586192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604476
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/1015467.1015484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042134783
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3390/sym10110600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108057463
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
132 schema:name School of Computer Science and Engineering, Central South University, 410083, Changsha, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...