Hyperspectral image classification with SVM and guided filter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yanhui Guo, Xijie Yin, Xuechen Zhao, Dongxin Yang, Yu Bai

ABSTRACT

Hyperspectral image (HSI) classification has been long envisioned in the remote sensing community. Many methods have been proposed for HSI classification. Among them, the method of fusing spatial features has been widely used and achieved good performance. Aiming at the problem of spatial feature extraction in spectral-spatial HSI classification, we proposed a guided filter-based method. We attempted two fusion methods for spectral and spatial features. In order to optimize the classification results, we also adopted a guided filter to obtain better results. We apply the support vector machine (SVM) to classify the HSI. Experiments show that our proposed methods can obtain very competitive results than compared methods on all the three popular datasets. More importantly, our methods are fast and easy to implement. More... »

PAGES

56

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13638-019-1346-z

DOI

http://dx.doi.org/10.1186/s13638-019-1346-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112646031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "Shandong Women\u2019s University, 250300, Ji\u2019nan, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yanhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "Shandong Women\u2019s University, 250300, Ji\u2019nan, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Xijie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "Shandong Women\u2019s University, 250300, Ji\u2019nan, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xuechen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dazhong News Group, Administrative Management Service, 250014, Ji\u2019Nan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Dongxin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California State University, Long Beach", 
          "id": "https://www.grid.ac/institutes/grid.213902.b", 
          "name": [
            "California State University, 90831, Fullerton, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Yu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patcog.2011.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002729257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/05704928.2012.705800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015260415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2011.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2005.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040146717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041128701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2246-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049175376", 
          "https://doi.org/10.1007/s00500-016-2246-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2246-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049175376", 
          "https://doi.org/10.1007/s00500-016-2246-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2005.857031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2009.2015341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2010.2046618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2010.2047711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2002.803794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.827262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.831865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.846154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.846154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2010.2048116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2011.2129595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2012.2201730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2012.2230268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2264508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1968.1054102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2820043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101865304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Hyperspectral image (HSI) classification has been long envisioned in the remote sensing community. Many methods have been proposed for HSI classification. Among them, the method of fusing spatial features has been widely used and achieved good performance. Aiming at the problem of spatial feature extraction in spectral-spatial HSI classification, we proposed a guided filter-based method. We attempted two fusion methods for spectral and spatial features. In order to optimize the classification results, we also adopted a guided filter to obtain better results. We apply the support vector machine (SVM) to classify the HSI. Experiments show that our proposed methods can obtain very competitive results than compared methods on all the three popular datasets. More importantly, our methods are fast and easy to implement.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13638-019-1346-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050477", 
        "issn": [
          "1687-1472", 
          "1687-1499"
        ], 
        "name": "EURASIP Journal on Wireless Communications and Networking", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Hyperspectral image classification with SVM and guided filter", 
    "pagination": "56", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1811f2160e06574b1c9b947f60ab2dfd5d13512d0d873a2bd38d3a33cd2c0cc3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13638-019-1346-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112646031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13638-019-1346-z", 
      "https://app.dimensions.ai/details/publication/pub.1112646031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11724_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13638-019-1346-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1346-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1346-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1346-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1346-z'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13638-019-1346-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne4dd486407b649a790bd8922881d24e0
4 schema:citation sg:pub.10.1007/bf00994018
5 sg:pub.10.1007/s00500-016-2246-3
6 https://doi.org/10.1016/j.cageo.2011.08.019
7 https://doi.org/10.1016/j.patcog.2011.03.035
8 https://doi.org/10.1016/j.rse.2005.10.014
9 https://doi.org/10.1016/j.rse.2007.12.014
10 https://doi.org/10.1080/05704928.2012.705800
11 https://doi.org/10.1109/access.2018.2820043
12 https://doi.org/10.1109/lgrs.2005.857031
13 https://doi.org/10.1109/lgrs.2009.2015341
14 https://doi.org/10.1109/lgrs.2010.2046618
15 https://doi.org/10.1109/lgrs.2010.2047711
16 https://doi.org/10.1109/tgrs.2002.803794
17 https://doi.org/10.1109/tgrs.2004.827262
18 https://doi.org/10.1109/tgrs.2004.831865
19 https://doi.org/10.1109/tgrs.2005.846154
20 https://doi.org/10.1109/tgrs.2010.2048116
21 https://doi.org/10.1109/tgrs.2011.2129595
22 https://doi.org/10.1109/tgrs.2012.2201730
23 https://doi.org/10.1109/tgrs.2012.2230268
24 https://doi.org/10.1109/tgrs.2013.2264508
25 https://doi.org/10.1109/tit.1968.1054102
26 https://doi.org/10.1109/tpami.2012.213
27 https://doi.org/10.1145/1961189.1961199
28 schema:datePublished 2019-12
29 schema:datePublishedReg 2019-12-01
30 schema:description Hyperspectral image (HSI) classification has been long envisioned in the remote sensing community. Many methods have been proposed for HSI classification. Among them, the method of fusing spatial features has been widely used and achieved good performance. Aiming at the problem of spatial feature extraction in spectral-spatial HSI classification, we proposed a guided filter-based method. We attempted two fusion methods for spectral and spatial features. In order to optimize the classification results, we also adopted a guided filter to obtain better results. We apply the support vector machine (SVM) to classify the HSI. Experiments show that our proposed methods can obtain very competitive results than compared methods on all the three popular datasets. More importantly, our methods are fast and easy to implement.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N67cf3601da014b72b62989b3d2a966bd
35 Ne396cb6f0de644f69ef706fc9db90f91
36 sg:journal.1050477
37 schema:name Hyperspectral image classification with SVM and guided filter
38 schema:pagination 56
39 schema:productId N4396e21127cd4715bd6c36ffa15d66f6
40 N6727e1be7cf8482191c8295318ac3be0
41 N91154570ed5d4be2b9dbb2981496d6e7
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112646031
43 https://doi.org/10.1186/s13638-019-1346-z
44 schema:sdDatePublished 2019-04-11T11:21
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N89fb86e049be4d9e89d285fe911372b9
47 schema:url https://link.springer.com/10.1186%2Fs13638-019-1346-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1e02ad0bfb8a4883af5ed3c8da9ee9bb schema:affiliation N943ca062fcbe4b6ab2963fe9fcab572a
52 schema:familyName Yang
53 schema:givenName Dongxin
54 rdf:type schema:Person
55 N1f462b4410f24e9f88edbeb8fdc2f187 schema:affiliation https://www.grid.ac/institutes/grid.213902.b
56 schema:familyName Bai
57 schema:givenName Yu
58 rdf:type schema:Person
59 N346b929d06c841a692a510c6bf2a554f rdf:first N69f2c77340c54b15bd3f7afced9081e6
60 rdf:rest Nb7078949cbb74be988b78a67bced5ff7
61 N4396e21127cd4715bd6c36ffa15d66f6 schema:name dimensions_id
62 schema:value pub.1112646031
63 rdf:type schema:PropertyValue
64 N4ba6d36a43324ae28fca7e791aeeab67 rdf:first N519cebb8a32a4c958c2b33a266365438
65 rdf:rest N346b929d06c841a692a510c6bf2a554f
66 N4bc52440cb2d4c64a3ca0b915937ea9a rdf:first N1f462b4410f24e9f88edbeb8fdc2f187
67 rdf:rest rdf:nil
68 N519cebb8a32a4c958c2b33a266365438 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
69 schema:familyName Yin
70 schema:givenName Xijie
71 rdf:type schema:Person
72 N6727e1be7cf8482191c8295318ac3be0 schema:name readcube_id
73 schema:value 1811f2160e06574b1c9b947f60ab2dfd5d13512d0d873a2bd38d3a33cd2c0cc3
74 rdf:type schema:PropertyValue
75 N67cf3601da014b72b62989b3d2a966bd schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N69f2c77340c54b15bd3f7afced9081e6 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
78 schema:familyName Zhao
79 schema:givenName Xuechen
80 rdf:type schema:Person
81 N89fb86e049be4d9e89d285fe911372b9 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N91154570ed5d4be2b9dbb2981496d6e7 schema:name doi
84 schema:value 10.1186/s13638-019-1346-z
85 rdf:type schema:PropertyValue
86 N943ca062fcbe4b6ab2963fe9fcab572a schema:name Dazhong News Group, Administrative Management Service, 250014, Ji’Nan, China
87 rdf:type schema:Organization
88 N9bb9868d1fbd4744ad77ed027fa1cce1 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
89 schema:familyName Guo
90 schema:givenName Yanhui
91 rdf:type schema:Person
92 Nb7078949cbb74be988b78a67bced5ff7 rdf:first N1e02ad0bfb8a4883af5ed3c8da9ee9bb
93 rdf:rest N4bc52440cb2d4c64a3ca0b915937ea9a
94 Ne396cb6f0de644f69ef706fc9db90f91 schema:volumeNumber 2019
95 rdf:type schema:PublicationVolume
96 Ne4dd486407b649a790bd8922881d24e0 rdf:first N9bb9868d1fbd4744ad77ed027fa1cce1
97 rdf:rest N4ba6d36a43324ae28fca7e791aeeab67
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1050477 schema:issn 1687-1472
105 1687-1499
106 schema:name EURASIP Journal on Wireless Communications and Networking
107 rdf:type schema:Periodical
108 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
109 https://doi.org/10.1007/bf00994018
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00500-016-2246-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049175376
112 https://doi.org/10.1007/s00500-016-2246-3
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.cageo.2011.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965575
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.patcog.2011.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002729257
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.rse.2005.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040146717
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.rse.2007.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041128701
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/05704928.2012.705800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015260415
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/access.2018.2820043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101865304
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/lgrs.2005.857031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358288
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/lgrs.2009.2015341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358791
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/lgrs.2010.2046618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359024
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/lgrs.2010.2047711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359037
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tgrs.2002.803794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608655
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tgrs.2004.827262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609148
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tgrs.2004.831865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609191
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tgrs.2005.846154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609438
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tgrs.2010.2048116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611460
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tgrs.2011.2129595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611816
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tgrs.2012.2201730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612415
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tgrs.2012.2230268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612703
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tgrs.2013.2264508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613006
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tit.1968.1054102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646421
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tpami.2012.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744310
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.213902.b schema:alternateName California State University, Long Beach
159 schema:name California State University, 90831, Fullerton, CA, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
162 schema:name Shandong Women’s University, 250300, Ji’nan, Shandong, China
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...