Uplink achievable rate in underlay random access OFDM-based cognitive radio networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Han-Bae Kong, Sabit Ekin, Erchin Serpedin, Khalid A. Qaraqe

ABSTRACT

This paper investigates the uplink achievable rate of secondary users (SUs) in underlay orthogonal frequency division multiplexing based cognitive radio networks, where the SUs randomly access the subcarriers of the primary network. In practice, the primary base stations (PBSs), such as cellular base stations, may not be placed close to each other to mitigate the interferences among them. In this regard, we model the spatial distribution of the PBSs as a β-Ginibre point process which captures the repulsive placement of the PBSs. It is assumed that in order to alleviate the interferences at the PBSs from the SUs, each SU controls its transmit power based on the average interference level at the closest PBS induced by the SU. We first analytically identify the characteristics of the transmit powers at the SUs. Then, tight approximations of the uplink achievable rate of the secondary network are provided in two different scenarios that assume either a decentralized or centralized allocation of the SUs’ subcarriers, respectively. The accuracy of our analytical results is validated by simulation results. More... »

PAGES

22

References to SciGraph publications

  • 2017-12. Resource allocation for OFDM-based multiuser cooperative underlay cognitive systems in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13638-019-1339-y

    DOI

    http://dx.doi.org/10.1186/s13638-019-1339-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111645703


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Electrical and Computer Engineering, Texas A&M University, 77843, College Station, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kong", 
            "givenName": "Han-Bae", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oklahoma State University", 
              "id": "https://www.grid.ac/institutes/grid.65519.3e", 
              "name": [
                "School of Electrical and Computer Engineering, Oklahoma State University, 74078, Stillwater, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ekin", 
            "givenName": "Sabit", 
            "id": "sg:person.016326540775.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326540775.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Electrical and Computer Engineering, Texas A&M University, 77843, College Station, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Serpedin", 
            "givenName": "Erchin", 
            "id": "sg:person.013757547505.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757547505.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University at Qatar", 
              "id": "https://www.grid.ac/institutes/grid.412392.f", 
              "name": [
                "Department of Electrical and Computer Engineering, Texas A&M University at Qatar, 23874, Doha, Qatar"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qaraqe", 
            "givenName": "Khalid A.", 
            "id": "sg:person.01100332464.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100332464.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.peva.2014.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020972402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cc.2013.6633744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061256255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cc.2013.6633744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061256255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/comst.2016.2624939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061258448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2013.130506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061318179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2014.2361080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061318591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mwc.2009.4907554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061432248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/surv.2013.052213.00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcomm.2010.093010.090478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061557915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcomm.2013.031213.120346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061558890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2012.2203126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061803374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2013.2259511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061821785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2012.021512.110131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061828109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2013.050613.120325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061828689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2013.100113.130220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061828891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2014.2316519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061829234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2014.2332335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061829358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/09-aap620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064390603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2017.2674181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083936155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.peva.2017.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091973972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-017-0958-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092562983", 
              "https://doi.org/10.1186/s13638-017-0958-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/acssc.2010.5757867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094626010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwcmc.2011.5982716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095592616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139043816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098776230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2018.2842826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104358425"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "This paper investigates the uplink achievable rate of secondary users (SUs) in underlay orthogonal frequency division multiplexing based cognitive radio networks, where the SUs randomly access the subcarriers of the primary network. In practice, the primary base stations (PBSs), such as cellular base stations, may not be placed close to each other to mitigate the interferences among them. In this regard, we model the spatial distribution of the PBSs as a \u03b2-Ginibre point process which captures the repulsive placement of the PBSs. It is assumed that in order to alleviate the interferences at the PBSs from the SUs, each SU controls its transmit power based on the average interference level at the closest PBS induced by the SU. We first analytically identify the characteristics of the transmit powers at the SUs. Then, tight approximations of the uplink achievable rate of the secondary network are provided in two different scenarios that assume either a decentralized or centralized allocation of the SUs\u2019 subcarriers, respectively. The accuracy of our analytical results is validated by simulation results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13638-019-1339-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4318462", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1050477", 
            "issn": [
              "1687-1472", 
              "1687-1499"
            ], 
            "name": "EURASIP Journal on Wireless Communications and Networking", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Uplink achievable rate in underlay random access OFDM-based cognitive radio networks", 
        "pagination": "22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8e6f92f2378fa5c4a741b9f540674866f1dbdf555de7f13f898a9696c4d0000e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13638-019-1339-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111645703"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13638-019-1339-y", 
          "https://app.dimensions.ai/details/publication/pub.1111645703"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13638-019-1339-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1339-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1339-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1339-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-019-1339-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13638-019-1339-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nbf1b6b84516a4af6bfc0ecb28a29bc6b
    4 schema:citation sg:pub.10.1186/s13638-017-0958-4
    5 https://doi.org/10.1016/j.peva.2014.05.002
    6 https://doi.org/10.1016/j.peva.2017.09.001
    7 https://doi.org/10.1017/cbo9781139043816
    8 https://doi.org/10.1109/access.2018.2842826
    9 https://doi.org/10.1109/acssc.2010.5757867
    10 https://doi.org/10.1109/cc.2013.6633744
    11 https://doi.org/10.1109/comst.2016.2624939
    12 https://doi.org/10.1109/iwcmc.2011.5982716
    13 https://doi.org/10.1109/jsac.2013.130506
    14 https://doi.org/10.1109/jsac.2014.2361080
    15 https://doi.org/10.1109/jsen.2017.2674181
    16 https://doi.org/10.1109/mwc.2009.4907554
    17 https://doi.org/10.1109/surv.2013.052213.00000
    18 https://doi.org/10.1109/tcomm.2010.093010.090478
    19 https://doi.org/10.1109/tcomm.2013.031213.120346
    20 https://doi.org/10.1109/tsp.2012.2203126
    21 https://doi.org/10.1109/tvt.2013.2259511
    22 https://doi.org/10.1109/twc.2012.021512.110131
    23 https://doi.org/10.1109/twc.2013.050613.120325
    24 https://doi.org/10.1109/twc.2013.100113.130220
    25 https://doi.org/10.1109/twc.2014.2316519
    26 https://doi.org/10.1109/twc.2014.2332335
    27 https://doi.org/10.1214/09-aap620
    28 schema:datePublished 2019-12
    29 schema:datePublishedReg 2019-12-01
    30 schema:description This paper investigates the uplink achievable rate of secondary users (SUs) in underlay orthogonal frequency division multiplexing based cognitive radio networks, where the SUs randomly access the subcarriers of the primary network. In practice, the primary base stations (PBSs), such as cellular base stations, may not be placed close to each other to mitigate the interferences among them. In this regard, we model the spatial distribution of the PBSs as a β-Ginibre point process which captures the repulsive placement of the PBSs. It is assumed that in order to alleviate the interferences at the PBSs from the SUs, each SU controls its transmit power based on the average interference level at the closest PBS induced by the SU. We first analytically identify the characteristics of the transmit powers at the SUs. Then, tight approximations of the uplink achievable rate of the secondary network are provided in two different scenarios that assume either a decentralized or centralized allocation of the SUs’ subcarriers, respectively. The accuracy of our analytical results is validated by simulation results.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N270251edf575406f88c150aeef09a9ab
    35 N556cb71f8a5e49039c93c53a5ef2f16c
    36 sg:journal.1050477
    37 schema:name Uplink achievable rate in underlay random access OFDM-based cognitive radio networks
    38 schema:pagination 22
    39 schema:productId N138d088466bf49c8afc917194d76eafe
    40 N9795989311344e0db14c7f1d2cbcd0ca
    41 Nd466d04f76634a5cae0f1f37f7444fcb
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111645703
    43 https://doi.org/10.1186/s13638-019-1339-y
    44 schema:sdDatePublished 2019-04-11T08:56
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N55bf92cf92dd402ca5d8aac574ea8fc3
    47 schema:url https://link.springer.com/10.1186%2Fs13638-019-1339-y
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N138d088466bf49c8afc917194d76eafe schema:name doi
    52 schema:value 10.1186/s13638-019-1339-y
    53 rdf:type schema:PropertyValue
    54 N270251edf575406f88c150aeef09a9ab schema:volumeNumber 2019
    55 rdf:type schema:PublicationVolume
    56 N556cb71f8a5e49039c93c53a5ef2f16c schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 N55bf92cf92dd402ca5d8aac574ea8fc3 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N65333ab33ca8402aa6afe04db1a700af rdf:first sg:person.013757547505.34
    61 rdf:rest Naae07464010844819eb4004c4e855ed6
    62 N9795989311344e0db14c7f1d2cbcd0ca schema:name readcube_id
    63 schema:value 8e6f92f2378fa5c4a741b9f540674866f1dbdf555de7f13f898a9696c4d0000e
    64 rdf:type schema:PropertyValue
    65 Naae07464010844819eb4004c4e855ed6 rdf:first sg:person.01100332464.29
    66 rdf:rest rdf:nil
    67 Nb0f624c6edc448a39cd65ae2e1f4fbf6 rdf:first sg:person.016326540775.29
    68 rdf:rest N65333ab33ca8402aa6afe04db1a700af
    69 Nbf1b6b84516a4af6bfc0ecb28a29bc6b rdf:first Nf74fc7395c7e4a7fbe039ac551ce84f8
    70 rdf:rest Nb0f624c6edc448a39cd65ae2e1f4fbf6
    71 Nd466d04f76634a5cae0f1f37f7444fcb schema:name dimensions_id
    72 schema:value pub.1111645703
    73 rdf:type schema:PropertyValue
    74 Nf74fc7395c7e4a7fbe039ac551ce84f8 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    75 schema:familyName Kong
    76 schema:givenName Han-Bae
    77 rdf:type schema:Person
    78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information and Computing Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Artificial Intelligence and Image Processing
    83 rdf:type schema:DefinedTerm
    84 sg:grant.4318462 http://pending.schema.org/fundedItem sg:pub.10.1186/s13638-019-1339-y
    85 rdf:type schema:MonetaryGrant
    86 sg:journal.1050477 schema:issn 1687-1472
    87 1687-1499
    88 schema:name EURASIP Journal on Wireless Communications and Networking
    89 rdf:type schema:Periodical
    90 sg:person.01100332464.29 schema:affiliation https://www.grid.ac/institutes/grid.412392.f
    91 schema:familyName Qaraqe
    92 schema:givenName Khalid A.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100332464.29
    94 rdf:type schema:Person
    95 sg:person.013757547505.34 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    96 schema:familyName Serpedin
    97 schema:givenName Erchin
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013757547505.34
    99 rdf:type schema:Person
    100 sg:person.016326540775.29 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
    101 schema:familyName Ekin
    102 schema:givenName Sabit
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326540775.29
    104 rdf:type schema:Person
    105 sg:pub.10.1186/s13638-017-0958-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092562983
    106 https://doi.org/10.1186/s13638-017-0958-4
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.peva.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020972402
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.peva.2017.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091973972
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1017/cbo9781139043816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098776230
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/access.2018.2842826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104358425
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/acssc.2010.5757867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094626010
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/cc.2013.6633744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061256255
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/comst.2016.2624939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258448
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/iwcmc.2011.5982716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095592616
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/jsac.2013.130506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061318179
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/jsac.2014.2361080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061318591
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/jsen.2017.2674181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083936155
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/mwc.2009.4907554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061432248
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/surv.2013.052213.00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446872
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/tcomm.2010.093010.090478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061557915
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/tcomm.2013.031213.120346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061558890
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/tsp.2012.2203126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803374
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/tvt.2013.2259511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821785
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/twc.2012.021512.110131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828109
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/twc.2013.050613.120325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828689
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/twc.2013.100113.130220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828891
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/twc.2014.2316519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061829234
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/twc.2014.2332335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061829358
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1214/09-aap620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390603
    153 rdf:type schema:CreativeWork
    154 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
    155 schema:name Department of Electrical and Computer Engineering, Texas A&M University, 77843, College Station, TX, USA
    156 rdf:type schema:Organization
    157 https://www.grid.ac/institutes/grid.412392.f schema:alternateName Texas A&M University at Qatar
    158 schema:name Department of Electrical and Computer Engineering, Texas A&M University at Qatar, 23874, Doha, Qatar
    159 rdf:type schema:Organization
    160 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
    161 schema:name School of Electrical and Computer Engineering, Oklahoma State University, 74078, Stillwater, OK, USA
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...