Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Luca Carlino, Di Jin, Michael Muma, Abdelhak M. Zoubir

ABSTRACT

The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments. More... »

PAGES

19

References to SciGraph publications

  • 2006-12. Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization in APPLIED SIGNAL PROCESSING
  • 2008-02. A Survey on Wireless Position Estimation in WIRELESS PERSONAL COMMUNICATIONS
  • 2017-12. TOA localization for multipath and NLOS environment with virtual stations in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2013-12. A simple iterative positioning algorithm for client node localization in WLANs in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13638-018-1335-7

    DOI

    http://dx.doi.org/10.1186/s13638-018-1335-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111646215


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "Department of Innovation Engineering, University of Salento, Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carlino", 
            "givenName": "Luca", 
            "id": "sg:person.07602464067.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602464067.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Signal Processing Group, Department of Electrical Engineering and Information Technology, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jin", 
            "givenName": "Di", 
            "id": "sg:person.011136254573.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136254573.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Signal Processing Group, Department of Electrical Engineering and Information Technology, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muma", 
            "givenName": "Michael", 
            "id": "sg:person.010645765323.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645765323.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Signal Processing Group, Department of Electrical Engineering and Information Technology, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zoubir", 
            "givenName": "Abdelhak M.", 
            "id": "sg:person.013316510015.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1687-1499-2013-276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029263633", 
              "https://doi.org/10.1186/1687-1499-2013-276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/381677.381693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044867963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-007-9375-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045581435", 
              "https://doi.org/10.1007/s11277-007-9375-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/25.554738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061134780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/35.667411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061159594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2005.843548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061316740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lcomm.2004.833831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061346746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lcomm.2011.121410.101379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061349317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lsp.2008.2012229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061377311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lwc.2016.2567394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061380302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2005.1458284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061422361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2005.1458287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061422362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmc.2010.132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061690455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2003.814469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2013.2251341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061803762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2015.2394300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061804726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2015.2398839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061804738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2002.807158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061818156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2007.900397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061819153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2010.2040096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061820298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2014.2334397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061822421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2013.011713.120557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061828520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2016.2586844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061830483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/asp/2006/43429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063205839", 
              "https://doi.org/10.1155/asp/2006/43429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijsnet.2013.057515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067492717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-017-0896-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085932845", 
              "https://doi.org/10.1186/s13638-017-0896-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-017-0896-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085932845", 
              "https://doi.org/10.1186/s13638-017-0896-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2017.2749231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091667649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106804501", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106804501", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today\u2019s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13638-018-1335-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050477", 
            "issn": [
              "1687-1472", 
              "1687-1499"
            ], 
            "name": "EURASIP Journal on Wireless Communications and Networking", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments", 
        "pagination": "19", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9591e6a3c3de5028f509c06746720b55982e6e7c52ecd00890f57a63f0952140"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13638-018-1335-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111646215"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13638-018-1335-7", 
          "https://app.dimensions.ai/details/publication/pub.1111646215"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13638-018-1335-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1335-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1335-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1335-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1335-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13638-018-1335-7 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N53ca8343350147bc8b4c1b1fb46f1422
    4 schema:citation sg:pub.10.1007/s11277-007-9375-z
    5 sg:pub.10.1155/asp/2006/43429
    6 sg:pub.10.1186/1687-1499-2013-276
    7 sg:pub.10.1186/s13638-017-0896-1
    8 https://app.dimensions.ai/details/publication/pub.1106804501
    9 https://doi.org/10.1109/25.554738
    10 https://doi.org/10.1109/35.667411
    11 https://doi.org/10.1109/jsac.2005.843548
    12 https://doi.org/10.1109/lcomm.2004.833831
    13 https://doi.org/10.1109/lcomm.2011.121410.101379
    14 https://doi.org/10.1109/lsp.2008.2012229
    15 https://doi.org/10.1109/lwc.2016.2567394
    16 https://doi.org/10.1109/msp.2005.1458284
    17 https://doi.org/10.1109/msp.2005.1458287
    18 https://doi.org/10.1109/tmc.2010.132
    19 https://doi.org/10.1109/tsp.2003.814469
    20 https://doi.org/10.1109/tsp.2013.2251341
    21 https://doi.org/10.1109/tsp.2015.2394300
    22 https://doi.org/10.1109/tsp.2015.2398839
    23 https://doi.org/10.1109/tvt.2002.807158
    24 https://doi.org/10.1109/tvt.2007.900397
    25 https://doi.org/10.1109/tvt.2010.2040096
    26 https://doi.org/10.1109/tvt.2014.2334397
    27 https://doi.org/10.1109/twc.2013.011713.120557
    28 https://doi.org/10.1109/twc.2016.2586844
    29 https://doi.org/10.1109/twc.2017.2749231
    30 https://doi.org/10.1145/381677.381693
    31 https://doi.org/10.1504/ijsnet.2013.057515
    32 schema:datePublished 2019-12
    33 schema:datePublishedReg 2019-12-01
    34 schema:description The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N84cdf0d32a8a475ca3e3a5b55abe1699
    39 Nad4355818a244a55b206e4d24cae1dd2
    40 sg:journal.1050477
    41 schema:name Robust distributed cooperative RSS-based localization for directed graphs in mixed LoS/NLoS environments
    42 schema:pagination 19
    43 schema:productId N1e591108f2ef4910b8e274edaf0f8c22
    44 N8187252f77ef4766928846ec1c021a9c
    45 Nf221b45fe1c74d5eb8dcfbc11f8ef5b5
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111646215
    47 https://doi.org/10.1186/s13638-018-1335-7
    48 schema:sdDatePublished 2019-04-11T08:56
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N575b1f4bb84a4f63a0db8b0dffb917fc
    51 schema:url https://link.springer.com/10.1186%2Fs13638-018-1335-7
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N1e591108f2ef4910b8e274edaf0f8c22 schema:name doi
    56 schema:value 10.1186/s13638-018-1335-7
    57 rdf:type schema:PropertyValue
    58 N53ca8343350147bc8b4c1b1fb46f1422 rdf:first sg:person.07602464067.96
    59 rdf:rest N6632649fff854a0c95abaf3d29a4a4b6
    60 N575b1f4bb84a4f63a0db8b0dffb917fc schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N6632649fff854a0c95abaf3d29a4a4b6 rdf:first sg:person.011136254573.43
    63 rdf:rest N6f77257c30df4d579db7c7641ac6ba9d
    64 N6f77257c30df4d579db7c7641ac6ba9d rdf:first sg:person.010645765323.85
    65 rdf:rest Ncfcf9eb2309840f1b540b082db1ba518
    66 N8187252f77ef4766928846ec1c021a9c schema:name dimensions_id
    67 schema:value pub.1111646215
    68 rdf:type schema:PropertyValue
    69 N84cdf0d32a8a475ca3e3a5b55abe1699 schema:issueNumber 1
    70 rdf:type schema:PublicationIssue
    71 Nad4355818a244a55b206e4d24cae1dd2 schema:volumeNumber 2019
    72 rdf:type schema:PublicationVolume
    73 Ncfcf9eb2309840f1b540b082db1ba518 rdf:first sg:person.013316510015.38
    74 rdf:rest rdf:nil
    75 Nf221b45fe1c74d5eb8dcfbc11f8ef5b5 schema:name readcube_id
    76 schema:value 9591e6a3c3de5028f509c06746720b55982e6e7c52ecd00890f57a63f0952140
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Technology
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Communications Technologies
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1050477 schema:issn 1687-1472
    85 1687-1499
    86 schema:name EURASIP Journal on Wireless Communications and Networking
    87 rdf:type schema:Periodical
    88 sg:person.010645765323.85 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    89 schema:familyName Muma
    90 schema:givenName Michael
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645765323.85
    92 rdf:type schema:Person
    93 sg:person.011136254573.43 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    94 schema:familyName Jin
    95 schema:givenName Di
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136254573.43
    97 rdf:type schema:Person
    98 sg:person.013316510015.38 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    99 schema:familyName Zoubir
    100 schema:givenName Abdelhak M.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38
    102 rdf:type schema:Person
    103 sg:person.07602464067.96 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    104 schema:familyName Carlino
    105 schema:givenName Luca
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602464067.96
    107 rdf:type schema:Person
    108 sg:pub.10.1007/s11277-007-9375-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045581435
    109 https://doi.org/10.1007/s11277-007-9375-z
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1155/asp/2006/43429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063205839
    112 https://doi.org/10.1155/asp/2006/43429
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1186/1687-1499-2013-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029263633
    115 https://doi.org/10.1186/1687-1499-2013-276
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1186/s13638-017-0896-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932845
    118 https://doi.org/10.1186/s13638-017-0896-1
    119 rdf:type schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1106804501 schema:CreativeWork
    121 https://doi.org/10.1109/25.554738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061134780
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/35.667411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061159594
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/jsac.2005.843548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061316740
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/lcomm.2004.833831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061346746
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/lcomm.2011.121410.101379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061349317
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/lsp.2008.2012229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377311
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/lwc.2016.2567394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061380302
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/msp.2005.1458284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422361
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/msp.2005.1458287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422362
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tmc.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061690455
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tsp.2003.814469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798949
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tsp.2013.2251341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803762
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tsp.2015.2394300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804726
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tsp.2015.2398839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804738
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tvt.2002.807158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818156
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tvt.2007.900397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061819153
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tvt.2010.2040096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061820298
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/tvt.2014.2334397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061822421
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/twc.2013.011713.120557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828520
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/twc.2016.2586844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061830483
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/twc.2017.2749231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091667649
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1145/381677.381693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044867963
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1504/ijsnet.2013.057515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067492717
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
    168 schema:name Signal Processing Group, Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
    171 schema:name Department of Innovation Engineering, University of Salento, Lecce, Italy
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...