Log-moment estimators of the Nakagami-lognormal distribution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Juan Reig, Conor Brennan, Vicent M. Rodrigo Peñarrocha, Lorenzo Rubio

ABSTRACT

In this paper, estimators of the Nakagami-lognormal (NL) distribution based on the method of log-moments have been derived and thoroughly analyzed. Unlike maximum likelihood (ML) estimators, the log-moment estimators of the NL distribution are obtained using straightforward equations with a unique solution. Also, their performance has been evaluated using the sample mean, confidence regions and normalized mean square error (NMSE). The NL distribution has been extensively used to model composite small-scale fading and shadowing in wireless communication channels. This distribution is of interest in scenarios where the small-scale fading and the shadowing processes cannot be easily separated such as the vehicular environment. More... »

PAGES

9

References to SciGraph publications

  • 2004-02. Error Rates in Generalized Shadowed Fading Channels in WIRELESS PERSONAL COMMUNICATIONS
  • 2012-02. A Generalized Suzuki Distribution in WIRELESS PERSONAL COMMUNICATIONS
  • 2014. Log-Cumulant Parameter Estimator of Log-Normal Distribution in INTELLIGENT COMPUTING THEORY
  • 1986. Non-Uniform Random Variate Generation in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13638-018-1328-6

    DOI

    http://dx.doi.org/10.1186/s13638-018-1328-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111312798


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Valencia", 
              "id": "https://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Electromagnetic Radiation Group (GRE), Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera, 46022, Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reig", 
            "givenName": "Juan", 
            "id": "sg:person.014130410652.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130410652.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dublin City University", 
              "id": "https://www.grid.ac/institutes/grid.15596.3e", 
              "name": [
                "School of Electronic Engineering, Dublin City University, Glasnevin, 9, Dublin, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brennan", 
            "givenName": "Conor", 
            "id": "sg:person.014623004461.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623004461.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Valencia", 
              "id": "https://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Electromagnetic Radiation Group (GRE), Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera, 46022, Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodrigo Pe\u00f1arrocha", 
            "givenName": "Vicent M.", 
            "id": "sg:person.016645121243.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645121243.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polytechnic University of Valencia", 
              "id": "https://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Electromagnetic Radiation Group (GRE), Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Polit\u00e8cnica de Val\u00e8ncia, Camino de Vera, 46022, Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubio", 
            "givenName": "Lorenzo", 
            "id": "sg:person.015027644614.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027644614.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11277-010-0095-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001293323", 
              "https://doi.org/10.1007/s11277-010-0095-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:wire.0000032253.68423.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003911028", 
              "https://doi.org/10.1023/b:wire.0000032253.68423.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aeue.2006.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021536262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-09333-8_72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034164602", 
              "https://doi.org/10.1007/978-3-319-09333-8_72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8643-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035447677", 
              "https://doi.org/10.1007/978-1-4613-8643-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8643-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035447677", 
              "https://doi.org/10.1007/978-1-4613-8643-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/cje.2016.05.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056747903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:20061744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056796419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/26.317410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061136575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/4234.841316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061171668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.121628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061242839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcom.1977.1093888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061552082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2006.883753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061818878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2012.2233506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061821590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2011.111210.102115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061827945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/twc.2013.050713.120054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061828693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21553/rev-jec.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069115268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lcomm.2017.2669989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083936225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvt.2017.2703874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085511503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jcn.2016.000027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094237233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471457175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471457175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "In this paper, estimators of the Nakagami-lognormal (NL) distribution based on the method of log-moments have been derived and thoroughly analyzed. Unlike maximum likelihood (ML) estimators, the log-moment estimators of the NL distribution are obtained using straightforward equations with a unique solution. Also, their performance has been evaluated using the sample mean, confidence regions and normalized mean square error (NMSE). The NL distribution has been extensively used to model composite small-scale fading and shadowing in wireless communication channels. This distribution is of interest in scenarios where the small-scale fading and the shadowing processes cannot be easily separated such as the vehicular environment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13638-018-1328-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1050477", 
            "issn": [
              "1687-1472", 
              "1687-1499"
            ], 
            "name": "EURASIP Journal on Wireless Communications and Networking", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Log-moment estimators of the Nakagami-lognormal distribution", 
        "pagination": "9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c5bed2d89cf0597c5963c9946250a63b112f65e041c887021bf77178b370488b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13638-018-1328-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111312798"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13638-018-1328-6", 
          "https://app.dimensions.ai/details/publication/pub.1111312798"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6331_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13638-018-1328-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1328-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1328-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1328-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13638-018-1328-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13638-018-1328-6 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author Ne0a1f0b449f04f3aa59e6e5032f9eb09
    4 schema:citation sg:pub.10.1007/978-1-4613-8643-8
    5 sg:pub.10.1007/978-3-319-09333-8_72
    6 sg:pub.10.1007/s11277-010-0095-4
    7 sg:pub.10.1023/b:wire.0000032253.68423.86
    8 https://doi.org/10.1002/0471457175
    9 https://doi.org/10.1016/j.aeue.2006.03.004
    10 https://doi.org/10.1049/cje.2016.05.020
    11 https://doi.org/10.1049/el:20061744
    12 https://doi.org/10.1109/26.317410
    13 https://doi.org/10.1109/4234.841316
    14 https://doi.org/10.1109/9.121628
    15 https://doi.org/10.1109/jcn.2016.000027
    16 https://doi.org/10.1109/lcomm.2017.2669989
    17 https://doi.org/10.1109/tcom.1977.1093888
    18 https://doi.org/10.1109/tvt.2006.883753
    19 https://doi.org/10.1109/tvt.2012.2233506
    20 https://doi.org/10.1109/tvt.2017.2703874
    21 https://doi.org/10.1109/twc.2011.111210.102115
    22 https://doi.org/10.1109/twc.2013.050713.120054
    23 https://doi.org/10.21553/rev-jec.73
    24 schema:datePublished 2019-12
    25 schema:datePublishedReg 2019-12-01
    26 schema:description In this paper, estimators of the Nakagami-lognormal (NL) distribution based on the method of log-moments have been derived and thoroughly analyzed. Unlike maximum likelihood (ML) estimators, the log-moment estimators of the NL distribution are obtained using straightforward equations with a unique solution. Also, their performance has been evaluated using the sample mean, confidence regions and normalized mean square error (NMSE). The NL distribution has been extensively used to model composite small-scale fading and shadowing in wireless communication channels. This distribution is of interest in scenarios where the small-scale fading and the shadowing processes cannot be easily separated such as the vehicular environment.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N1404a4d359514c299a720df9458a6ff4
    31 N7b4b8426f2e84a19a2661f458a0e986d
    32 sg:journal.1050477
    33 schema:name Log-moment estimators of the Nakagami-lognormal distribution
    34 schema:pagination 9
    35 schema:productId N11afbd1718be4011a95b48546ceccbcf
    36 N52c30b429b3d44658f2ba196d7cc2183
    37 Ne703d33e7c9c44198f7fb2577e35a1cd
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111312798
    39 https://doi.org/10.1186/s13638-018-1328-6
    40 schema:sdDatePublished 2019-04-11T08:37
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N397c24c2745e40a1ba0aa3aaae539cd0
    43 schema:url https://link.springer.com/10.1186%2Fs13638-018-1328-6
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N11afbd1718be4011a95b48546ceccbcf schema:name doi
    48 schema:value 10.1186/s13638-018-1328-6
    49 rdf:type schema:PropertyValue
    50 N1404a4d359514c299a720df9458a6ff4 schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 N397c24c2745e40a1ba0aa3aaae539cd0 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N52c30b429b3d44658f2ba196d7cc2183 schema:name readcube_id
    55 schema:value c5bed2d89cf0597c5963c9946250a63b112f65e041c887021bf77178b370488b
    56 rdf:type schema:PropertyValue
    57 N5dfe4e1d1c46444ebc3eff57c22fd140 rdf:first sg:person.016645121243.53
    58 rdf:rest Nf32caf51aec8480a840f3c4cc6fbba30
    59 N7b4b8426f2e84a19a2661f458a0e986d schema:volumeNumber 2019
    60 rdf:type schema:PublicationVolume
    61 N7d579b8240884f1a8336f3e423ffa2ee rdf:first sg:person.014623004461.74
    62 rdf:rest N5dfe4e1d1c46444ebc3eff57c22fd140
    63 Ne0a1f0b449f04f3aa59e6e5032f9eb09 rdf:first sg:person.014130410652.58
    64 rdf:rest N7d579b8240884f1a8336f3e423ffa2ee
    65 Ne703d33e7c9c44198f7fb2577e35a1cd schema:name dimensions_id
    66 schema:value pub.1111312798
    67 rdf:type schema:PropertyValue
    68 Nf32caf51aec8480a840f3c4cc6fbba30 rdf:first sg:person.015027644614.08
    69 rdf:rest rdf:nil
    70 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Technology
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Communications Technologies
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1050477 schema:issn 1687-1472
    77 1687-1499
    78 schema:name EURASIP Journal on Wireless Communications and Networking
    79 rdf:type schema:Periodical
    80 sg:person.014130410652.58 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
    81 schema:familyName Reig
    82 schema:givenName Juan
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130410652.58
    84 rdf:type schema:Person
    85 sg:person.014623004461.74 schema:affiliation https://www.grid.ac/institutes/grid.15596.3e
    86 schema:familyName Brennan
    87 schema:givenName Conor
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623004461.74
    89 rdf:type schema:Person
    90 sg:person.015027644614.08 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
    91 schema:familyName Rubio
    92 schema:givenName Lorenzo
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015027644614.08
    94 rdf:type schema:Person
    95 sg:person.016645121243.53 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
    96 schema:familyName Rodrigo Peñarrocha
    97 schema:givenName Vicent M.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645121243.53
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-1-4613-8643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035447677
    101 https://doi.org/10.1007/978-1-4613-8643-8
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-319-09333-8_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034164602
    104 https://doi.org/10.1007/978-3-319-09333-8_72
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11277-010-0095-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293323
    107 https://doi.org/10.1007/s11277-010-0095-4
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/b:wire.0000032253.68423.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003911028
    110 https://doi.org/10.1023/b:wire.0000032253.68423.86
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/0471457175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661195
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.aeue.2006.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021536262
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1049/cje.2016.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056747903
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1049/el:20061744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056796419
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/26.317410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061136575
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/4234.841316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171668
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/9.121628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242839
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/jcn.2016.000027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094237233
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/lcomm.2017.2669989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083936225
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/tcom.1977.1093888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061552082
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/tvt.2006.883753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818878
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/tvt.2012.2233506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821590
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/tvt.2017.2703874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085511503
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/twc.2011.111210.102115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827945
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/twc.2013.050713.120054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828693
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.21553/rev-jec.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069115268
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.15596.3e schema:alternateName Dublin City University
    145 schema:name School of Electronic Engineering, Dublin City University, Glasnevin, 9, Dublin, Ireland
    146 rdf:type schema:Organization
    147 https://www.grid.ac/institutes/grid.157927.f schema:alternateName Polytechnic University of Valencia
    148 schema:name Electromagnetic Radiation Group (GRE), Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...