Bayesian inference for biomarker discovery in proteomics: an analytic solution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Noura Dridi, Audrey Giremus, Jean-Francois Giovannelli, Caroline Truntzer, Melita Hadzagic, Jean-Philippe Charrier, Laurent Gerfault, Patrick Ducoroy, Bruno Lacroix, Pierre Grangeat, Pascal Roy

ABSTRACT

This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode. More... »

PAGES

9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13637-017-0062-4

DOI

http://dx.doi.org/10.1186/s13637-017-0062-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090675233

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28710702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France", 
            "National Engineering School of Gabes (ENIG), University of Gabes, Gabes, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dridi", 
        "givenName": "Noura", 
        "id": "sg:person.015414236713.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015414236713.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giremus", 
        "givenName": "Audrey", 
        "id": "sg:person.016305433245.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305433245.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannelli", 
        "givenName": "Jean-Francois", 
        "id": "sg:person.010501316025.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501316025.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "CLIPP, P\u00f4le de Recherche Universit\u00e9 de Bourgogne, 21000, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Truntzer", 
        "givenName": "Caroline", 
        "id": "sg:person.01267066175.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267066175.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NATO Centre for Maritime Research and Experimentation", 
          "id": "https://www.grid.ac/institutes/grid.425579.8", 
          "name": [
            "IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France", 
            "NATO STO Centre for Maritime Research and Experimentation, 19126, La Spezia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hadzagic", 
        "givenName": "Melita", 
        "id": "sg:person.01065630146.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065630146.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BioM\u00e9rieux (France)", 
          "id": "https://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Technology Research Department, Innovation Unit, bioM\u00e9rieux SA, Marcy l\u2019\u00c9toile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charrier", 
        "givenName": "Jean-Philippe", 
        "id": "sg:person.016632237551.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632237551.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Univ. Grenoble Alpes, F-38000, Grenoble, France", 
            "CEA, LETI, MINATEC Campus, F-38054, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerfault", 
        "givenName": "Laurent", 
        "id": "sg:person.01234657471.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234657471.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "CLIPP, P\u00f4le de Recherche Universit\u00e9 de Bourgogne, 21000, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ducoroy", 
        "givenName": "Patrick", 
        "id": "sg:person.01275151763.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275151763.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BioM\u00e9rieux (France)", 
          "id": "https://www.grid.ac/institutes/grid.424167.2", 
          "name": [
            "Technology Research Department, Innovation Unit, bioM\u00e9rieux SA, Marcy l\u2019\u00c9toile, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacroix", 
        "givenName": "Bruno", 
        "id": "sg:person.014067411113.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014067411113.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "Univ. Grenoble Alpes, F-38000, Grenoble, France", 
            "CEA, LETI, MINATEC Campus, F-38054, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grangeat", 
        "givenName": "Pierre", 
        "id": "sg:person.011066771206.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066771206.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Claude Bernard University Lyon 1", 
          "id": "https://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "Service de Biostatistique - Bioinformatique, Hospices Civils de Lyon, Lyon, France", 
            "CNRS UMR 5558, LBBE, \u00c9quipe Biostatistique Sant\u00e9, Villeurbanne, France", 
            "Universit\u00e9 de Lyon, Universit\u00e9 Claude Bernard Lyon 1, Lyon, France", 
            "P\u00f4le Rh\u00f4ne-Alpes de Bioinformatique, Universit\u00e9 Claude Bernard - Lyon 1, 69622, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Pascal", 
        "id": "sg:person.01040447451.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040447451.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/mcp.m111.008235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008823237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2014.2359979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009118157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00904.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014934741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04031-3_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016567250", 
          "https://doi.org/10.1007/978-3-642-04031-3_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2001-1326-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019957856", 
          "https://doi.org/10.1186/2001-1326-3-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/erm.12.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020310384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024824538", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4145-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024824538", 
          "https://doi.org/10.1007/978-1-4757-4145-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4145-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024824538", 
          "https://doi.org/10.1007/978-1-4757-4145-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025159615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1056397487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029623619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m800238-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033503801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2155-6180.s1-005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034703615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(02)00284-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044447375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(02)00284-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044447375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2008.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050867698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11135-005-6224-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053603358", 
          "https://doi.org/10.1007/s11135-005-6224-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1970.10488635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.978387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061231806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069289261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420027624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109387316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13637-017-0062-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036363", 
        "issn": [
          "1687-4145", 
          "1687-4153"
        ], 
        "name": "EURASIP Journal on Bioinformatics and Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Bayesian inference for biomarker discovery in proteomics: an analytic solution", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e3e0dbed5f456cf46a0c997aeb8773dbf045d5f04b6223481d9d5b7317afd30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28710702"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101263720"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13637-017-0062-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090675233"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13637-017-0062-4", 
      "https://app.dimensions.ai/details/publication/pub.1090675233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13637-017-0062-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13637-017-0062-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13637-017-0062-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13637-017-0062-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13637-017-0062-4'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13637-017-0062-4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N5dc550393b3c422f9ed4907b2926afb6
4 schema:citation sg:pub.10.1007/978-1-4757-4145-2
5 sg:pub.10.1007/978-3-642-04031-3_13
6 sg:pub.10.1007/s11135-005-6224-6
7 sg:pub.10.1186/2001-1326-3-7
8 https://app.dimensions.ai/details/publication/pub.1024824538
9 https://doi.org/10.1016/j.ygeno.2008.06.006
10 https://doi.org/10.1016/s0378-3758(02)00284-7
11 https://doi.org/10.1074/mcp.m111.008235
12 https://doi.org/10.1074/mcp.m800238-mcp200
13 https://doi.org/10.1080/00401706.1970.10488635
14 https://doi.org/10.1093/bib/bbq019
15 https://doi.org/10.1109/78.978387
16 https://doi.org/10.1109/access.2014.2359979
17 https://doi.org/10.1111/j.1467-9868.2005.00503.x
18 https://doi.org/10.1111/j.1541-0420.2007.00904.x
19 https://doi.org/10.1198/016214501753382273
20 https://doi.org/10.1201/9781420027624
21 https://doi.org/10.1214/ss/1056397487
22 https://doi.org/10.1586/erm.12.32
23 https://doi.org/10.2202/1544-6115.1027
24 https://doi.org/10.4172/2155-6180.s1-005
25 schema:datePublished 2017-12
26 schema:datePublishedReg 2017-12-01
27 schema:description This paper addresses the question of biomarker discovery in proteomics. Given clinical data regarding a list of proteins for a set of individuals, the tackled problem is to extract a short subset of proteins the concentrations of which are an indicator of the biological status (healthy or pathological). In this paper, it is formulated as a specific instance of variable selection. The originality is that the proteins are not investigated one after the other but the best partition between discriminant and non-discriminant proteins is directly sought. In this way, correlations between the proteins are intrinsically taken into account in the decision. The developed strategy is derived in a Bayesian setting, and the decision is optimal in the sense that it minimizes a global mean error. It is finally based on the posterior probabilities of the partitions. The main difficulty is to calculate these probabilities since they are based on the so-called evidence that require marginalization of all the unknown model parameters. Two models are presented that relate the status to the protein concentrations, depending whether the latter are biomarkers or not. The first model accounts for biological variabilities by assuming that the concentrations are Gaussian distributed with a mean and a covariance matrix that depend on the status only for the biomarkers. The second one is an extension that also takes into account the technical variabilities that may significantly impact the observed concentrations. The main contributions of the paper are: (1) a new Bayesian formulation of the biomarker selection problem, (2) the closed-form expression of the posterior probabilities in the noiseless case, and (3) a suitable approximated solution in the noisy case. The methods are numerically assessed and compared to the state-of-the-art methods (t test, LASSO, Battacharyya distance, FOHSIC) on synthetic and real data from proteins quantified in human serum by mass spectrometry in selected reaction monitoring mode.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N090f1f361ff5408c9e768bc91fd9adba
32 N9c7cbff2e3794fbeadb1cb53d75a8f7c
33 sg:journal.1036363
34 schema:name Bayesian inference for biomarker discovery in proteomics: an analytic solution
35 schema:pagination 9
36 schema:productId N426db59d9f984327b9164049a16db438
37 N815c8a58371543e88dc46e999352c9b5
38 N936dc3606529466abec8b9fd70d689e5
39 N939f666a900d438baf46be7b25673d35
40 Ned359b44f75b4167bddbbb347afe9c3c
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090675233
42 https://doi.org/10.1186/s13637-017-0062-4
43 schema:sdDatePublished 2019-04-11T12:39
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N2e5aa0c2471546b684d15b302a075879
46 schema:url https://link.springer.com/10.1186%2Fs13637-017-0062-4
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N090f1f361ff5408c9e768bc91fd9adba schema:volumeNumber 2017
51 rdf:type schema:PublicationVolume
52 N0bd54ec91ef641a7905081cbde9ffdf7 rdf:first sg:person.01267066175.55
53 rdf:rest N6a476ae584184802940478d3d2491f8c
54 N2e5aa0c2471546b684d15b302a075879 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N426db59d9f984327b9164049a16db438 schema:name doi
57 schema:value 10.1186/s13637-017-0062-4
58 rdf:type schema:PropertyValue
59 N453fb02ae2c14c2c958234e140853d3c rdf:first sg:person.010501316025.14
60 rdf:rest N0bd54ec91ef641a7905081cbde9ffdf7
61 N464f7b3201bc47b59fe017bae87c8ca5 rdf:first sg:person.016305433245.69
62 rdf:rest N453fb02ae2c14c2c958234e140853d3c
63 N5dc550393b3c422f9ed4907b2926afb6 rdf:first sg:person.015414236713.44
64 rdf:rest N464f7b3201bc47b59fe017bae87c8ca5
65 N6a476ae584184802940478d3d2491f8c rdf:first sg:person.01065630146.42
66 rdf:rest N6f64a0ee75064d6fb42705920ea42129
67 N6f64a0ee75064d6fb42705920ea42129 rdf:first sg:person.016632237551.79
68 rdf:rest N9bdc8ae6fe544d8fa2bff0c4e72676a1
69 N770f09ea8ee34ec48314f146a083c4ac rdf:first sg:person.01275151763.37
70 rdf:rest Nea48a793d7d1472cb8377bf744f00c0f
71 N815c8a58371543e88dc46e999352c9b5 schema:name pubmed_id
72 schema:value 28710702
73 rdf:type schema:PropertyValue
74 N936dc3606529466abec8b9fd70d689e5 schema:name nlm_unique_id
75 schema:value 101263720
76 rdf:type schema:PropertyValue
77 N939f666a900d438baf46be7b25673d35 schema:name dimensions_id
78 schema:value pub.1090675233
79 rdf:type schema:PropertyValue
80 N9bdc8ae6fe544d8fa2bff0c4e72676a1 rdf:first sg:person.01234657471.58
81 rdf:rest N770f09ea8ee34ec48314f146a083c4ac
82 N9c7cbff2e3794fbeadb1cb53d75a8f7c schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 Nbdce6ac6030e4d599de59dd0cb00e05c rdf:first sg:person.01040447451.94
85 rdf:rest rdf:nil
86 Nea48a793d7d1472cb8377bf744f00c0f rdf:first sg:person.014067411113.80
87 rdf:rest Nf5ffe5a3ce4c4411b9b54aa7f49cea1f
88 Ned359b44f75b4167bddbbb347afe9c3c schema:name readcube_id
89 schema:value 2e3e0dbed5f456cf46a0c997aeb8773dbf045d5f04b6223481d9d5b7317afd30
90 rdf:type schema:PropertyValue
91 Nf5ffe5a3ce4c4411b9b54aa7f49cea1f rdf:first sg:person.011066771206.63
92 rdf:rest Nbdce6ac6030e4d599de59dd0cb00e05c
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biochemistry and Cell Biology
98 rdf:type schema:DefinedTerm
99 sg:journal.1036363 schema:issn 1687-4145
100 1687-4153
101 schema:name EURASIP Journal on Bioinformatics and Systems Biology
102 rdf:type schema:Periodical
103 sg:person.01040447451.94 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
104 schema:familyName Roy
105 schema:givenName Pascal
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040447451.94
107 rdf:type schema:Person
108 sg:person.010501316025.14 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
109 schema:familyName Giovannelli
110 schema:givenName Jean-Francois
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501316025.14
112 rdf:type schema:Person
113 sg:person.01065630146.42 schema:affiliation https://www.grid.ac/institutes/grid.425579.8
114 schema:familyName Hadzagic
115 schema:givenName Melita
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065630146.42
117 rdf:type schema:Person
118 sg:person.011066771206.63 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
119 schema:familyName Grangeat
120 schema:givenName Pierre
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066771206.63
122 rdf:type schema:Person
123 sg:person.01234657471.58 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
124 schema:familyName Gerfault
125 schema:givenName Laurent
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234657471.58
127 rdf:type schema:Person
128 sg:person.01267066175.55 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
129 schema:familyName Truntzer
130 schema:givenName Caroline
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267066175.55
132 rdf:type schema:Person
133 sg:person.01275151763.37 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
134 schema:familyName Ducoroy
135 schema:givenName Patrick
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275151763.37
137 rdf:type schema:Person
138 sg:person.014067411113.80 schema:affiliation https://www.grid.ac/institutes/grid.424167.2
139 schema:familyName Lacroix
140 schema:givenName Bruno
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014067411113.80
142 rdf:type schema:Person
143 sg:person.015414236713.44 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
144 schema:familyName Dridi
145 schema:givenName Noura
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015414236713.44
147 rdf:type schema:Person
148 sg:person.016305433245.69 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
149 schema:familyName Giremus
150 schema:givenName Audrey
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305433245.69
152 rdf:type schema:Person
153 sg:person.016632237551.79 schema:affiliation https://www.grid.ac/institutes/grid.424167.2
154 schema:familyName Charrier
155 schema:givenName Jean-Philippe
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632237551.79
157 rdf:type schema:Person
158 sg:pub.10.1007/978-1-4757-4145-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024824538
159 https://doi.org/10.1007/978-1-4757-4145-2
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-642-04031-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016567250
162 https://doi.org/10.1007/978-3-642-04031-3_13
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11135-005-6224-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053603358
165 https://doi.org/10.1007/s11135-005-6224-6
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/2001-1326-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019957856
168 https://doi.org/10.1186/2001-1326-3-7
169 rdf:type schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1024824538 schema:CreativeWork
171 https://doi.org/10.1016/j.ygeno.2008.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867698
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0378-3758(02)00284-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447375
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1074/mcp.m111.008235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008823237
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1074/mcp.m800238-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033503801
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/00401706.1970.10488635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284124
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bib/bbq019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025159615
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/78.978387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231806
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/access.2014.2359979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009118157
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1541-0420.2007.00904.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934741
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1201/9781420027624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109387316
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1214/ss/1056397487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029623619
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1586/erm.12.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020310384
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
200 rdf:type schema:CreativeWork
201 https://doi.org/10.4172/2155-6180.s1-005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034703615
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.424167.2 schema:alternateName BioMérieux (France)
204 schema:name Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l’Étoile, France
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.425579.8 schema:alternateName NATO Centre for Maritime Research and Experimentation
207 schema:name IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France
208 NATO STO Centre for Maritime Research and Experimentation, 19126, La Spezia, Italy
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
211 schema:name IMS (Univ. Bordeaux, CNRS, BINP), 33400, Talence, France
212 National Engineering School of Gabes (ENIG), University of Gabes, Gabes, Tunisia
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.457348.9 schema:alternateName CEA Grenoble
215 schema:name CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
216 Univ. Grenoble Alpes, F-38000, Grenoble, France
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
219 schema:name CLIPP, Pôle de Recherche Université de Bourgogne, 21000, Dijon, France
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.7849.2 schema:alternateName Claude Bernard University Lyon 1
222 schema:name CNRS UMR 5558, LBBE, Équipe Biostatistique Santé, Villeurbanne, France
223 Pôle Rhône-Alpes de Bioinformatique, Université Claude Bernard - Lyon 1, 69622, Villeurbanne, France
224 Service de Biostatistique - Bioinformatique, Hospices Civils de Lyon, Lyon, France
225 Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...