Enhancement of speech dynamics for voice activity detection using DNN View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Suci Dwijayanti, Kei Yamamori, Masato Miyoshi

ABSTRACT

Voice activity detection (VAD) is an important preprocessing step for various speech applications to identify speech and non-speech periods in input signals. In this paper, we propose a deep neural network (DNN)-based VAD method for detecting such periods in noisy signals using speech dynamics, which are time-varying speech signals that may be expressed as the first- and second-order derivatives of mel cepstra, also known as the delta and delta-delta features. Unlike these derivatives, in this paper, the dynamics are highlighted by speech period candidates, which are calculated based on heuristic rules for the patterns of the first and second derivatives of the input signals. These candidates, together with the log power spectra, are input into the DNN to obtain VAD decisions. In this study, experiments are conducted to compare the proposed method with a DNN-based method, which exclusively utilizes log power spectra by using speech signals smeared with five types of noise (white, babble, factory, car, and pink) with signal-to-noise ratios (SNRs) of 10, 5, 0, and − 5 dB. The experimental results show that the proposed method is superior under all the considered noise conditions, indicating that the speech period candidates improve the log power spectra. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13636-018-0135-7

DOI

http://dx.doi.org/10.1186/s13636-018-0135-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106960902


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sriwijaya University", 
          "id": "https://www.grid.ac/institutes/grid.108126.c", 
          "name": [
            "Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, 920-1192, Kanazawa, Japan", 
            "Department of Electrical Engineering, Universitas Sriwijaya, Palembang, Indonesia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dwijayanti", 
        "givenName": "Suci", 
        "id": "sg:person.07411570244.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411570244.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, 920-1192, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamori", 
        "givenName": "Kei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanazawa University", 
          "id": "https://www.grid.ac/institutes/grid.9707.9", 
          "name": [
            "Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, 920-1192, Kanazawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyoshi", 
        "givenName": "Masato", 
        "id": "sg:person.013251114271.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251114271.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1155/s1110865703305013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000310684", 
          "https://doi.org/10.1155/s1110865703305013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(98)00085-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006548331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0277-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016036389", 
          "https://doi.org/10.1186/s13634-015-0277-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0277-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016036389", 
          "https://doi.org/10.1186/s13634-015-0277-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1250/ast.33.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016126750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13636-015-0069-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017565268", 
          "https://doi.org/10.1186/s13636-015-0069-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13636-015-0069-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017565268", 
          "https://doi.org/10.1186/s13636-015-0069-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2003.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020222130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2003.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020222130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022958634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025429770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/scj.20529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028940932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1975.tb02840.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035978249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6393(99)00002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043833588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051633972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-spr.2008.0128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-spr.2008.0128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/35.620527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061159494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/89.326616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061242264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/97.736233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061251273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2012.2229986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taslp.2015.2505415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsa.2005.855842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061786401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.426895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062378150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00028ed1v01y200605sap002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069287914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/mas.v9n8p153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072967681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6639066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093409702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2012.6288863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093466661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscc.2002.1021726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093567136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2001.941197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093835326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icosp.2014.7015406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094235952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icosp.2002.1179987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094262893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6639345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094324618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscit.2004.1413869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094511105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Voice activity detection (VAD) is an important preprocessing step for various speech applications to identify speech and non-speech periods in input signals. In this paper, we propose a deep neural network (DNN)-based VAD method for detecting such periods in noisy signals using speech dynamics, which are time-varying speech signals that may be expressed as the first- and second-order derivatives of mel cepstra, also known as the delta and delta-delta features. Unlike these derivatives, in this paper, the dynamics are highlighted by speech period candidates, which are calculated based on heuristic rules for the patterns of the first and second derivatives of the input signals. These candidates, together with the log power spectra, are input into the DNN to obtain VAD decisions. In this study, experiments are conducted to compare the proposed method with a DNN-based method, which exclusively utilizes log power spectra by using speech signals smeared with five types of noise (white, babble, factory, car, and pink) with signal-to-noise ratios (SNRs) of 10, 5, 0, and \u2212 5 dB. The experimental results show that the proposed method is superior under all the considered noise conditions, indicating that the speech period candidates improve the log power spectra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13636-018-0135-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136257", 
        "issn": [
          "1687-4714", 
          "1687-4722"
        ], 
        "name": "EURASIP Journal on Audio, Speech, and Music Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Enhancement of speech dynamics for voice activity detection using DNN", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8451e9b2964e638c2ab0814a81e10aaffa08d1d35e773ef56c4f34fac6f4a0e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13636-018-0135-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106960902"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13636-018-0135-7", 
      "https://app.dimensions.ai/details/publication/pub.1106960902"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000526.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13636-018-0135-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13636-018-0135-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13636-018-0135-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13636-018-0135-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13636-018-0135-7'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13636-018-0135-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2478f1824326425f9cf8227ed5da8769
4 schema:citation sg:pub.10.1155/s1110865703305013
5 sg:pub.10.1186/s13634-015-0277-z
6 sg:pub.10.1186/s13636-015-0069-2
7 https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
8 https://doi.org/10.1002/scj.20529
9 https://doi.org/10.1016/j.csl.2013.11.004
10 https://doi.org/10.1016/j.specom.2003.10.002
11 https://doi.org/10.1016/j.specom.2009.08.003
12 https://doi.org/10.1016/j.tics.2007.09.004
13 https://doi.org/10.1016/s0167-6393(98)00085-5
14 https://doi.org/10.1016/s0167-6393(99)00002-3
15 https://doi.org/10.1049/iet-spr.2008.0128
16 https://doi.org/10.1109/35.620527
17 https://doi.org/10.1109/89.326616
18 https://doi.org/10.1109/97.736233
19 https://doi.org/10.1109/icassp.2001.941197
20 https://doi.org/10.1109/icassp.2012.6288863
21 https://doi.org/10.1109/icassp.2013.6639066
22 https://doi.org/10.1109/icassp.2013.6639345
23 https://doi.org/10.1109/icosp.2002.1179987
24 https://doi.org/10.1109/icosp.2014.7015406
25 https://doi.org/10.1109/iscc.2002.1021726
26 https://doi.org/10.1109/iscit.2004.1413869
27 https://doi.org/10.1109/tasl.2012.2229986
28 https://doi.org/10.1109/taslp.2015.2505415
29 https://doi.org/10.1109/tsa.2005.855842
30 https://doi.org/10.1121/1.426895
31 https://doi.org/10.1250/ast.33.33
32 https://doi.org/10.2200/s00028ed1v01y200605sap002
33 https://doi.org/10.5539/mas.v9n8p153
34 schema:datePublished 2018-12
35 schema:datePublishedReg 2018-12-01
36 schema:description Voice activity detection (VAD) is an important preprocessing step for various speech applications to identify speech and non-speech periods in input signals. In this paper, we propose a deep neural network (DNN)-based VAD method for detecting such periods in noisy signals using speech dynamics, which are time-varying speech signals that may be expressed as the first- and second-order derivatives of mel cepstra, also known as the delta and delta-delta features. Unlike these derivatives, in this paper, the dynamics are highlighted by speech period candidates, which are calculated based on heuristic rules for the patterns of the first and second derivatives of the input signals. These candidates, together with the log power spectra, are input into the DNN to obtain VAD decisions. In this study, experiments are conducted to compare the proposed method with a DNN-based method, which exclusively utilizes log power spectra by using speech signals smeared with five types of noise (white, babble, factory, car, and pink) with signal-to-noise ratios (SNRs) of 10, 5, 0, and − 5 dB. The experimental results show that the proposed method is superior under all the considered noise conditions, indicating that the speech period candidates improve the log power spectra.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N2211c01f3238439a98c2db3bab54e960
41 N2e5939009c1a4766bec4efad0490097f
42 sg:journal.1136257
43 schema:name Enhancement of speech dynamics for voice activity detection using DNN
44 schema:pagination 10
45 schema:productId Nb31fe42d1e6c46d8b95327b98abf99d3
46 Nc3b6fc06a24e40d083722cf0e5febf23
47 Neb82b0bda769477a908d62f702c688d4
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106960902
49 https://doi.org/10.1186/s13636-018-0135-7
50 schema:sdDatePublished 2019-04-10T18:23
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N609a3aeb5d474783b505c1c6a025a07e
53 schema:url http://link.springer.com/10.1186%2Fs13636-018-0135-7
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1aef3169ece847ae91b7678daec9bbf8 rdf:first sg:person.013251114271.50
58 rdf:rest rdf:nil
59 N2211c01f3238439a98c2db3bab54e960 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N2478f1824326425f9cf8227ed5da8769 rdf:first sg:person.07411570244.93
62 rdf:rest N9f5b1d1432da4dd6a731f0f38883b8d4
63 N2e5939009c1a4766bec4efad0490097f schema:volumeNumber 2018
64 rdf:type schema:PublicationVolume
65 N609a3aeb5d474783b505c1c6a025a07e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N9332e108f3214aa887b3623ae7783b44 schema:affiliation https://www.grid.ac/institutes/grid.9707.9
68 schema:familyName Yamamori
69 schema:givenName Kei
70 rdf:type schema:Person
71 N9f5b1d1432da4dd6a731f0f38883b8d4 rdf:first N9332e108f3214aa887b3623ae7783b44
72 rdf:rest N1aef3169ece847ae91b7678daec9bbf8
73 Nb31fe42d1e6c46d8b95327b98abf99d3 schema:name dimensions_id
74 schema:value pub.1106960902
75 rdf:type schema:PropertyValue
76 Nc3b6fc06a24e40d083722cf0e5febf23 schema:name readcube_id
77 schema:value 8451e9b2964e638c2ab0814a81e10aaffa08d1d35e773ef56c4f34fac6f4a0e0
78 rdf:type schema:PropertyValue
79 Neb82b0bda769477a908d62f702c688d4 schema:name doi
80 schema:value 10.1186/s13636-018-0135-7
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:journal.1136257 schema:issn 1687-4714
89 1687-4722
90 schema:name EURASIP Journal on Audio, Speech, and Music Processing
91 rdf:type schema:Periodical
92 sg:person.013251114271.50 schema:affiliation https://www.grid.ac/institutes/grid.9707.9
93 schema:familyName Miyoshi
94 schema:givenName Masato
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251114271.50
96 rdf:type schema:Person
97 sg:person.07411570244.93 schema:affiliation https://www.grid.ac/institutes/grid.108126.c
98 schema:familyName Dwijayanti
99 schema:givenName Suci
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411570244.93
101 rdf:type schema:Person
102 sg:pub.10.1155/s1110865703305013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000310684
103 https://doi.org/10.1155/s1110865703305013
104 rdf:type schema:CreativeWork
105 sg:pub.10.1186/s13634-015-0277-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016036389
106 https://doi.org/10.1186/s13634-015-0277-z
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/s13636-015-0069-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017565268
109 https://doi.org/10.1186/s13636-015-0069-2
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/j.1538-7305.1975.tb02840.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035978249
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/scj.20529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028940932
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.csl.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022958634
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.specom.2003.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020222130
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.specom.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051633972
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.tics.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025429770
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0167-6393(98)00085-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006548331
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0167-6393(99)00002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043833588
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/iet-spr.2008.0128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838042
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/35.620527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061159494
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/89.326616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242264
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/97.736233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061251273
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/icassp.2001.941197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093835326
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/icassp.2012.6288863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093466661
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/icassp.2013.6639066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093409702
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/icassp.2013.6639345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094324618
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/icosp.2002.1179987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094262893
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icosp.2014.7015406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094235952
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/iscc.2002.1021726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093567136
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iscit.2004.1413869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094511105
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tasl.2012.2229986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517051
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/taslp.2015.2505415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517660
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tsa.2005.855842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786401
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1121/1.426895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062378150
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1250/ast.33.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016126750
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2200/s00028ed1v01y200605sap002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069287914
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5539/mas.v9n8p153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072967681
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.108126.c schema:alternateName Sriwijaya University
166 schema:name Department of Electrical Engineering, Universitas Sriwijaya, Palembang, Indonesia
167 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, 920-1192, Kanazawa, Japan
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.9707.9 schema:alternateName Kanazawa University
170 schema:name Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, 920-1192, Kanazawa, Japan
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...