Multi-resolution auditory cepstral coefficient and adaptive mask for speech enhancement with deep neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Ruwei Li, Xiaoyue Sun, Yanan Liu, Dengcai Yang, Liang Dong

ABSTRACT

The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR) non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from four cochleagrams of different resolutions can capture the local information and spectrotemporal context and reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced speech. Experimental results show that the proposed algorithm not only further improves speech quality and intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm has a lower complexity than the contrast algorithms. More... »

PAGES

22

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-019-0618-4

DOI

http://dx.doi.org/10.1186/s13634-019-0618-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113205214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Beijing Key Lab of Computational Intelligence and Intelligent System, Faculty of Information Technology, School of Information and Communications Engineering, Beijing University of Technology, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ruwei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Beijing Key Lab of Computational Intelligence and Intelligent System, Faculty of Information Technology, School of Information and Communications Engineering, Beijing University of Technology, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiaoyue", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Beijing Key Lab of Computational Intelligence and Intelligent System, Faculty of Information Technology, School of Information and Communications Engineering, Beijing University of Technology, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Beijing Key Lab of Computational Intelligence and Intelligent System, Faculty of Information Technology, School of Information and Communications Engineering, Beijing University of Technology, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Dengcai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor University", 
          "id": "https://www.grid.ac/institutes/grid.252890.4", 
          "name": [
            "Electrical and Computer Engineering, Baylor University, 76798, Waco, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Liang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.specom.2016.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022984858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2013.2291240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2011.2114881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061516717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2011.2172425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061516853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2013.2250961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2013.2270369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taslp.2014.2352935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taslp.2014.2364452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taslp.2015.2468583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061517574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1979.1163209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsa.2005.860851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061786501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icspcc.2015.7338847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093554482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6854294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093923300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisp-bmei.2016.7852850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094301483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2016.7471725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094694736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2010.5495680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095286597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6854965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095296114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-018-0412-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103674089", 
          "https://doi.org/10.1007/s40846-018-0412-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-018-0412-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103674089", 
          "https://doi.org/10.1007/s40846-018-0412-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108679173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108679173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420015836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109612400"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR) non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from four cochleagrams of different resolutions can capture the local information and spectrotemporal context and reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced speech. Experimental results show that the proposed algorithm not only further improves speech quality and intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm has a lower complexity than the contrast algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-019-0618-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Multi-resolution auditory cepstral coefficient and adaptive mask for speech enhancement with deep neural network", 
    "pagination": "22", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-019-0618-4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f0f8da17470f3f17e790854fe5c7f91a91bab8d5834f9da3434ee9eb054b0a36"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113205214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-019-0618-4", 
      "https://app.dimensions.ai/details/publication/pub.1113205214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56182_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-019-0618-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0618-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0618-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0618-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0618-4'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-019-0618-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2e4ffabd941d420daa46e9f3044394ca
4 schema:citation sg:pub.10.1007/s40846-018-0412-z
5 https://app.dimensions.ai/details/publication/pub.1108679173
6 https://doi.org/10.1016/j.specom.2016.10.008
7 https://doi.org/10.1109/cisp-bmei.2016.7852850
8 https://doi.org/10.1109/icassp.2010.5495680
9 https://doi.org/10.1109/icassp.2014.6854294
10 https://doi.org/10.1109/icassp.2014.6854965
11 https://doi.org/10.1109/icassp.2016.7471725
12 https://doi.org/10.1109/icspcc.2015.7338847
13 https://doi.org/10.1109/lsp.2013.2291240
14 https://doi.org/10.1109/tasl.2011.2114881
15 https://doi.org/10.1109/tasl.2011.2172425
16 https://doi.org/10.1109/tasl.2013.2250961
17 https://doi.org/10.1109/tasl.2013.2270369
18 https://doi.org/10.1109/taslp.2014.2352935
19 https://doi.org/10.1109/taslp.2014.2364452
20 https://doi.org/10.1109/taslp.2015.2468583
21 https://doi.org/10.1109/tassp.1979.1163209
22 https://doi.org/10.1109/tsa.2005.860851
23 https://doi.org/10.1201/9781420015836
24 https://doi.org/10.21437/interspeech.2017-549
25 schema:datePublished 2019-12
26 schema:datePublishedReg 2019-12-01
27 schema:description The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR) non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from four cochleagrams of different resolutions can capture the local information and spectrotemporal context and reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced speech. Experimental results show that the proposed algorithm not only further improves speech quality and intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm has a lower complexity than the contrast algorithms.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N14d582bbffb8446586c4a93b28d3346b
32 Ndecce44240ea4008946e7fe6faf2c18a
33 sg:journal.1357355
34 schema:name Multi-resolution auditory cepstral coefficient and adaptive mask for speech enhancement with deep neural network
35 schema:pagination 22
36 schema:productId N7cb21e577d79453aa5918beaefd3f52f
37 N842af1de4d1842ae97b6ed5429272ed2
38 Na942f37ff0334740a9919c0c56ab440e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113205214
40 https://doi.org/10.1186/s13634-019-0618-4
41 schema:sdDatePublished 2019-04-15T09:22
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N53988cc6745d4b5eb6ba685dbe32544c
44 schema:url https://link.springer.com/10.1186%2Fs13634-019-0618-4
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N14d582bbffb8446586c4a93b28d3346b schema:volumeNumber 2019
49 rdf:type schema:PublicationVolume
50 N2e4ffabd941d420daa46e9f3044394ca rdf:first N9bbbf3f7ea8a4cbfabc190c872ed1cf8
51 rdf:rest Nce8c02d477c84221aef09009f044be00
52 N492ae42eab1741b2b36d53cda8a5f5af schema:affiliation https://www.grid.ac/institutes/grid.252890.4
53 schema:familyName Dong
54 schema:givenName Liang
55 rdf:type schema:Person
56 N53988cc6745d4b5eb6ba685dbe32544c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N7cb21e577d79453aa5918beaefd3f52f schema:name dimensions_id
59 schema:value pub.1113205214
60 rdf:type schema:PropertyValue
61 N842af1de4d1842ae97b6ed5429272ed2 schema:name doi
62 schema:value 10.1186/s13634-019-0618-4
63 rdf:type schema:PropertyValue
64 N8d4a1f96947243f3a4f56e1441c8be80 rdf:first Nc51971aa7a30471ea2591f7953281482
65 rdf:rest Nfdc787969be148af8c1b6f8df20fa806
66 N9bbbf3f7ea8a4cbfabc190c872ed1cf8 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
67 schema:familyName Li
68 schema:givenName Ruwei
69 rdf:type schema:Person
70 Na942f37ff0334740a9919c0c56ab440e schema:name readcube_id
71 schema:value f0f8da17470f3f17e790854fe5c7f91a91bab8d5834f9da3434ee9eb054b0a36
72 rdf:type schema:PropertyValue
73 Nb274f742c0c6459c9a566f96e9b4d6e9 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
74 schema:familyName Liu
75 schema:givenName Yanan
76 rdf:type schema:Person
77 Nc51971aa7a30471ea2591f7953281482 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
78 schema:familyName Yang
79 schema:givenName Dengcai
80 rdf:type schema:Person
81 Nce8c02d477c84221aef09009f044be00 rdf:first Nfdfb6fd5885640ccadb2904fc9fc62ba
82 rdf:rest Nd90b0302700449d0955c029c25bce0a9
83 Nd90b0302700449d0955c029c25bce0a9 rdf:first Nb274f742c0c6459c9a566f96e9b4d6e9
84 rdf:rest N8d4a1f96947243f3a4f56e1441c8be80
85 Ndecce44240ea4008946e7fe6faf2c18a schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Nfdc787969be148af8c1b6f8df20fa806 rdf:first N492ae42eab1741b2b36d53cda8a5f5af
88 rdf:rest rdf:nil
89 Nfdfb6fd5885640ccadb2904fc9fc62ba schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
90 schema:familyName Sun
91 schema:givenName Xiaoyue
92 rdf:type schema:Person
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:journal.1357355 schema:issn 1687-0433
100 1687-6172
101 schema:name Applied Signal Processing
102 rdf:type schema:Periodical
103 sg:pub.10.1007/s40846-018-0412-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103674089
104 https://doi.org/10.1007/s40846-018-0412-z
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1108679173 schema:CreativeWork
107 https://doi.org/10.1016/j.specom.2016.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022984858
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cisp-bmei.2016.7852850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094301483
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/icassp.2010.5495680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095286597
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icassp.2014.6854294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093923300
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/icassp.2014.6854965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095296114
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/icassp.2016.7471725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094694736
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icspcc.2015.7338847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093554482
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/lsp.2013.2291240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378573
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tasl.2011.2114881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516717
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tasl.2011.2172425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516853
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tasl.2013.2250961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517108
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tasl.2013.2270369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517171
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/taslp.2014.2352935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517359
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/taslp.2014.2364452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517385
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/taslp.2015.2468583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517574
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tassp.1979.1163209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518517
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tsa.2005.860851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786501
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1201/9781420015836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109612400
142 rdf:type schema:CreativeWork
143 https://doi.org/10.21437/interspeech.2017-549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013020
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.252890.4 schema:alternateName Baylor University
146 schema:name Electrical and Computer Engineering, Baylor University, 76798, Waco, TX, USA
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.28703.3e schema:alternateName Beijing University of Technology
149 schema:name Beijing Key Lab of Computational Intelligence and Intelligent System, Faculty of Information Technology, School of Information and Communications Engineering, Beijing University of Technology, Beijing, China
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...