A robust modulation classification method using convolutional neural networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Siyang Zhou, Zhendong Yin, Zhilu Wu, Yunfei Chen, Nan Zhao, Zhutian Yang

ABSTRACT

Automatic modulation classification (AMC) is a core technique in noncooperative communication systems. In particular, feature-based (FB) AMC algorithms have been widely studied. Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability; to tackle this challenge, a robust AMC method using convolutional neural networks (CNN) is proposed in this paper. In total, 15 different modulation types are considered. The proposed method can classify the received signal directly without feature extracion, and it can automatically learn features from the received signals. The features learned by the CNN are presented and analyzed. The robust features of the received signals in a specific SNR range are studied. The accuracy of classification using CNN is shown to be remarkable, particularly for low SNRs. The generalization ability of robust features is also proven to be excellent using the support vector machine (SVM). Finally, to help us better understand the process of feature learning, some outputs of intermediate layers of the CNN are visualized. More... »

PAGES

21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-019-0616-6

DOI

http://dx.doi.org/10.1186/s13634-019-0616-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113117024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electronics and Information Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nangang District, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Siyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electronics and Information Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nangang District, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Zhendong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electronics and Information Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nangang District, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zhilu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "School of Information and Communication Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yunfei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "School of Engineering, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Nan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electronics and Information Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nangang District, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhutian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0165-1684(95)00099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000449102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-44188-7_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002607947", 
          "https://doi.org/10.1007/978-3-319-44188-7_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1499-2011-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028394461", 
          "https://doi.org/10.1186/1687-1499-2011-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-08991-1_100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048747784", 
          "https://doi.org/10.1007/978-3-319-08991-1_100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sat.1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050853018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2010.1893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056751029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2010.1893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056751029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mvt.2011.941893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061431418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2012.060412.110460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061828243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218488598000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062977837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186008x318440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aeue.2017.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083864813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2746140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091458337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093416695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18030924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101621470"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Automatic modulation classification (AMC) is a core technique in noncooperative communication systems. In particular, feature-based (FB) AMC algorithms have been widely studied. Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability; to tackle this challenge, a robust AMC method using convolutional neural networks (CNN) is proposed in this paper. In total, 15 different modulation types are considered. The proposed method can classify the received signal directly without feature extracion, and it can automatically learn features from the received signals. The features learned by the CNN are presented and analyzed. The robust features of the received signals in a specific SNR range are studied. The accuracy of classification using CNN is shown to be remarkable, particularly for low SNRs. The generalization ability of robust features is also proven to be excellent using the support vector machine (SVM). Finally, to help us better understand the process of feature learning, some outputs of intermediate layers of the CNN are visualized.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-019-0616-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "A robust modulation classification method using convolutional neural networks", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5364c58c2ed95359dde03df81de862fdd7b9732a1c5e66fe98aee6f5d36b278"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-019-0616-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113117024"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-019-0616-6", 
      "https://app.dimensions.ai/details/publication/pub.1113117024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68973_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-019-0616-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0616-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0616-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0616-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0616-6'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-019-0616-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na50dc9dc74a24d828c17f5b97b0abd69
4 schema:citation sg:pub.10.1007/978-3-319-08991-1_100
5 sg:pub.10.1007/978-3-319-44188-7_16
6 sg:pub.10.1186/1687-1499-2011-24
7 https://doi.org/10.1002/sat.1202
8 https://doi.org/10.1016/0165-1684(95)00099-2
9 https://doi.org/10.1016/j.aeue.2017.02.008
10 https://doi.org/10.1049/el.2010.1893
11 https://doi.org/10.1109/access.2017.2746140
12 https://doi.org/10.1109/iccv.2009.5459469
13 https://doi.org/10.1109/mvt.2011.941893
14 https://doi.org/10.1109/twc.2012.060412.110460
15 https://doi.org/10.1142/s0218488598000094
16 https://doi.org/10.1198/106186008x318440
17 https://doi.org/10.1561/2200000006
18 https://doi.org/10.3390/s18030924
19 schema:datePublished 2019-12
20 schema:datePublishedReg 2019-12-01
21 schema:description Automatic modulation classification (AMC) is a core technique in noncooperative communication systems. In particular, feature-based (FB) AMC algorithms have been widely studied. Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability; to tackle this challenge, a robust AMC method using convolutional neural networks (CNN) is proposed in this paper. In total, 15 different modulation types are considered. The proposed method can classify the received signal directly without feature extracion, and it can automatically learn features from the received signals. The features learned by the CNN are presented and analyzed. The robust features of the received signals in a specific SNR range are studied. The accuracy of classification using CNN is shown to be remarkable, particularly for low SNRs. The generalization ability of robust features is also proven to be excellent using the support vector machine (SVM). Finally, to help us better understand the process of feature learning, some outputs of intermediate layers of the CNN are visualized.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N85b69cc6b14948dfb631fc4f50694364
26 Nd6f3b5cf659343ebb9d97c82a4aa10dd
27 sg:journal.1357355
28 schema:name A robust modulation classification method using convolutional neural networks
29 schema:pagination 21
30 schema:productId N57e910cb81a64e97915dce989f4b7f90
31 N64b3e4e3704f42bf9228a336a72b7429
32 N6fea32b3f65e4893a4de8f9a0d1121da
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113117024
34 https://doi.org/10.1186/s13634-019-0616-6
35 schema:sdDatePublished 2019-04-11T13:25
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N395f2c0d85214e5d8abb555ca7805ee5
38 schema:url https://link.springer.com/10.1186%2Fs13634-019-0616-6
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N290ef325041b4808bb7426f922f80ed5 rdf:first N9e0cdef09fec42e1b4cb64afda36b64e
43 rdf:rest Nb5dda3504d8f40f3a423cec26d1b73e7
44 N324766c95b794b4b819714030615261e schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
45 schema:familyName Zhou
46 schema:givenName Siyang
47 rdf:type schema:Person
48 N395f2c0d85214e5d8abb555ca7805ee5 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N4ff6815c8c444b2aa5c8de819ce2b4b5 rdf:first N57139abf4f7d4dd0946bcbabe4c54ece
51 rdf:rest Nd8cfdb36dff549259deb75e7b6d865b9
52 N57139abf4f7d4dd0946bcbabe4c54ece schema:affiliation https://www.grid.ac/institutes/grid.30055.33
53 schema:familyName Chen
54 schema:givenName Yunfei
55 rdf:type schema:Person
56 N57e910cb81a64e97915dce989f4b7f90 schema:name doi
57 schema:value 10.1186/s13634-019-0616-6
58 rdf:type schema:PropertyValue
59 N64b3e4e3704f42bf9228a336a72b7429 schema:name readcube_id
60 schema:value d5364c58c2ed95359dde03df81de862fdd7b9732a1c5e66fe98aee6f5d36b278
61 rdf:type schema:PropertyValue
62 N6fea32b3f65e4893a4de8f9a0d1121da schema:name dimensions_id
63 schema:value pub.1113117024
64 rdf:type schema:PropertyValue
65 N85b69cc6b14948dfb631fc4f50694364 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N9e0cdef09fec42e1b4cb64afda36b64e schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
68 schema:familyName Yin
69 schema:givenName Zhendong
70 rdf:type schema:Person
71 Na4d36e6982db46fc9646c1ae9b192e4f schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
72 schema:familyName Yang
73 schema:givenName Zhutian
74 rdf:type schema:Person
75 Na50dc9dc74a24d828c17f5b97b0abd69 rdf:first N324766c95b794b4b819714030615261e
76 rdf:rest N290ef325041b4808bb7426f922f80ed5
77 Nb065d99ee032450aa98b1ee752c42053 rdf:first Na4d36e6982db46fc9646c1ae9b192e4f
78 rdf:rest rdf:nil
79 Nb5dda3504d8f40f3a423cec26d1b73e7 rdf:first Nec43f9e523254ad2bbfe7fd1a861d442
80 rdf:rest N4ff6815c8c444b2aa5c8de819ce2b4b5
81 Nd6f3b5cf659343ebb9d97c82a4aa10dd schema:volumeNumber 2019
82 rdf:type schema:PublicationVolume
83 Nd8cfdb36dff549259deb75e7b6d865b9 rdf:first Ned262931b41e4c409e7ae5bfc32babec
84 rdf:rest Nb065d99ee032450aa98b1ee752c42053
85 Nec43f9e523254ad2bbfe7fd1a861d442 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
86 schema:familyName Wu
87 schema:givenName Zhilu
88 rdf:type schema:Person
89 Ned262931b41e4c409e7ae5bfc32babec schema:affiliation https://www.grid.ac/institutes/grid.7372.1
90 schema:familyName Zhao
91 schema:givenName Nan
92 rdf:type schema:Person
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:journal.1357355 schema:issn 1687-0433
100 1687-6172
101 schema:name Applied Signal Processing
102 rdf:type schema:Periodical
103 sg:pub.10.1007/978-3-319-08991-1_100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048747784
104 https://doi.org/10.1007/978-3-319-08991-1_100
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-319-44188-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002607947
107 https://doi.org/10.1007/978-3-319-44188-7_16
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/1687-1499-2011-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028394461
110 https://doi.org/10.1186/1687-1499-2011-24
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/sat.1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050853018
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0165-1684(95)00099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000449102
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.aeue.2017.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083864813
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1049/el.2010.1893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056751029
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/access.2017.2746140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091458337
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/iccv.2009.5459469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093416695
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/mvt.2011.941893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061431418
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/twc.2012.060412.110460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061828243
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1142/s0218488598000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062977837
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1198/106186008x318440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199625
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1561/2200000006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001401
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3390/s18030924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101621470
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
137 schema:name School of Electronics and Information Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nangang District, Harbin, China
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
140 schema:name School of Information and Communication Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
143 schema:name School of Engineering, University of Warwick, CV4 7AL, Coventry, UK
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...