Optimized implementation of digital signal processing applications with gapless data acquisition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yanzhou Liu, Lee Barford, Shuvra S. Bhattacharyya

ABSTRACT

This paper presents novel models and design optimization methods for gapless deep waveform applications, where continuous streams of data must be processed reliably without dropping any samples. The approaches developed in this paper involve unified dataflow-based modeling of the interfaces and signal processing functionality of gapless deep waveform analysis. Bottleneck actors (computational modules) in the resulting dataflow model are then identified and tackled with approximate computing techniques. These techniques are developed and configured carefully so that large performance gains are achieved while keeping reductions in signal processing accuracy to a manageable level. Efficient actor- and graph-level code optimization techniques are also applied to further improve real-time performance. In addition to providing accurate, real-time processing on the experimental platform used in our experiments, the algorithm- and model-based formulation of the contributions in this part promotes their general utility in deep waveform analysis and their retargetability to other platforms. More... »

PAGES

19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-019-0615-7

DOI

http://dx.doi.org/10.1186/s13634-019-0615-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112776174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yanzhou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keysight Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.459732.e", 
          "name": [
            "Keysight Laboratories, Keysight Technologies, Inc., Reno, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barford", 
        "givenName": "Lee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tampere", 
          "id": "https://www.grid.ac/institutes/grid.5509.9", 
          "name": [
            "Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA", 
            "Laboratory of Pervasive Computing, Tampere University, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Shuvra S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-6859-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022605407", 
          "https://doi.org/10.1007/978-1-4614-6859-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6859-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022605407", 
          "https://doi.org/10.1007/978-1-4614-6859-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10686-008-9114-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048433889", 
          "https://doi.org/10.1007/s10686-008-9114-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2010.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.381846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1987.13876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/glocom.1989.64160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086250050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/i2mtc.2013.6555714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094599723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/autest.2013.6645046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095255797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3157669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100747949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "This paper presents novel models and design optimization methods for gapless deep waveform applications, where continuous streams of data must be processed reliably without dropping any samples. The approaches developed in this paper involve unified dataflow-based modeling of the interfaces and signal processing functionality of gapless deep waveform analysis. Bottleneck actors (computational modules) in the resulting dataflow model are then identified and tackled with approximate computing techniques. These techniques are developed and configured carefully so that large performance gains are achieved while keeping reductions in signal processing accuracy to a manageable level. Efficient actor- and graph-level code optimization techniques are also applied to further improve real-time performance. In addition to providing accurate, real-time processing on the experimental platform used in our experiments, the algorithm- and model-based formulation of the contributions in this part promotes their general utility in deep waveform analysis and their retargetability to other platforms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-019-0615-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4179202", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Optimized implementation of digital signal processing applications with gapless data acquisition", 
    "pagination": "19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a9513339f223b3bd3bd1ce926b44d2c96095f46ba74db1d93583f12016df324"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-019-0615-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112776174"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-019-0615-7", 
      "https://app.dimensions.ai/details/publication/pub.1112776174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29222_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-019-0615-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0615-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0615-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0615-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0615-7'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-019-0615-7 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N7372a09eccd24859bdc332e3d74c2fdc
4 schema:citation sg:pub.10.1007/978-1-4614-6859-2
5 sg:pub.10.1007/s10686-008-9114-9
6 https://doi.org/10.1016/j.fusengdes.2010.03.030
7 https://doi.org/10.1109/5.381846
8 https://doi.org/10.1109/autest.2013.6645046
9 https://doi.org/10.1109/glocom.1989.64160
10 https://doi.org/10.1109/i2mtc.2013.6555714
11 https://doi.org/10.1109/proc.1987.13876
12 https://doi.org/10.1145/3157669
13 schema:datePublished 2019-12
14 schema:datePublishedReg 2019-12-01
15 schema:description This paper presents novel models and design optimization methods for gapless deep waveform applications, where continuous streams of data must be processed reliably without dropping any samples. The approaches developed in this paper involve unified dataflow-based modeling of the interfaces and signal processing functionality of gapless deep waveform analysis. Bottleneck actors (computational modules) in the resulting dataflow model are then identified and tackled with approximate computing techniques. These techniques are developed and configured carefully so that large performance gains are achieved while keeping reductions in signal processing accuracy to a manageable level. Efficient actor- and graph-level code optimization techniques are also applied to further improve real-time performance. In addition to providing accurate, real-time processing on the experimental platform used in our experiments, the algorithm- and model-based formulation of the contributions in this part promotes their general utility in deep waveform analysis and their retargetability to other platforms.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N79924aeec4ff45e880a4156968d49b23
20 Ne01fd162b5c4427c869c417990ddc61f
21 sg:journal.1357355
22 schema:name Optimized implementation of digital signal processing applications with gapless data acquisition
23 schema:pagination 19
24 schema:productId N2a4ac054aa624206b60193fdba12171c
25 N6f401062ff1a48f5819e780b227ffae5
26 Na786875f855949e49b42921397a84d5b
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112776174
28 https://doi.org/10.1186/s13634-019-0615-7
29 schema:sdDatePublished 2019-04-11T11:58
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N9fa40f6d048e427ebef8dd48581cf494
32 schema:url https://link.springer.com/10.1186%2Fs13634-019-0615-7
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1c8464c8c94441a195f08786b1f5d5b4 schema:affiliation https://www.grid.ac/institutes/grid.5509.9
37 schema:familyName Bhattacharyya
38 schema:givenName Shuvra S.
39 rdf:type schema:Person
40 N1cf88dc9827e40eeba5a9a31410174c1 rdf:first Nd615d5d0b61b4eb8b92d526d9d52164a
41 rdf:rest N9b6a426cde044bf795a8146626ed67ff
42 N2a4ac054aa624206b60193fdba12171c schema:name dimensions_id
43 schema:value pub.1112776174
44 rdf:type schema:PropertyValue
45 N6f401062ff1a48f5819e780b227ffae5 schema:name doi
46 schema:value 10.1186/s13634-019-0615-7
47 rdf:type schema:PropertyValue
48 N7372a09eccd24859bdc332e3d74c2fdc rdf:first N8e96bf4996574928900c545f3ee55ae9
49 rdf:rest N1cf88dc9827e40eeba5a9a31410174c1
50 N79924aeec4ff45e880a4156968d49b23 schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 N8e96bf4996574928900c545f3ee55ae9 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
53 schema:familyName Liu
54 schema:givenName Yanzhou
55 rdf:type schema:Person
56 N9b6a426cde044bf795a8146626ed67ff rdf:first N1c8464c8c94441a195f08786b1f5d5b4
57 rdf:rest rdf:nil
58 N9fa40f6d048e427ebef8dd48581cf494 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Na786875f855949e49b42921397a84d5b schema:name readcube_id
61 schema:value 7a9513339f223b3bd3bd1ce926b44d2c96095f46ba74db1d93583f12016df324
62 rdf:type schema:PropertyValue
63 Nd615d5d0b61b4eb8b92d526d9d52164a schema:affiliation https://www.grid.ac/institutes/grid.459732.e
64 schema:familyName Barford
65 schema:givenName Lee
66 rdf:type schema:Person
67 Ne01fd162b5c4427c869c417990ddc61f schema:volumeNumber 2019
68 rdf:type schema:PublicationVolume
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
73 schema:name Computation Theory and Mathematics
74 rdf:type schema:DefinedTerm
75 sg:grant.4179202 http://pending.schema.org/fundedItem sg:pub.10.1186/s13634-019-0615-7
76 rdf:type schema:MonetaryGrant
77 sg:journal.1357355 schema:issn 1687-0433
78 1687-6172
79 schema:name Applied Signal Processing
80 rdf:type schema:Periodical
81 sg:pub.10.1007/978-1-4614-6859-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605407
82 https://doi.org/10.1007/978-1-4614-6859-2
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s10686-008-9114-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048433889
85 https://doi.org/10.1007/s10686-008-9114-9
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.fusengdes.2010.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511460
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/5.381846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179355
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/autest.2013.6645046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095255797
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/glocom.1989.64160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086250050
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/i2mtc.2013.6555714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094599723
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/proc.1987.13876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446141
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/3157669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100747949
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
102 schema:name Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.459732.e schema:alternateName Keysight Technologies (United States)
105 schema:name Keysight Laboratories, Keysight Technologies, Inc., Reno, USA
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.5509.9 schema:alternateName University of Tampere
108 schema:name Department of Electrical and Computer Engineering and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
109 Laboratory of Pervasive Computing, Tampere University, Tampere, Finland
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...