Signal-to-noise ratio estimation for M-QAM signals in η−μand κ−μfading channels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Wamberto José Lira de Queiroz, Danilo Brito Teixeira de Almeida, Francisco Madeiro, Waslon Terllizzie Araújo Lopes

ABSTRACT

In this paper, signal-to-noise ratio (SNR) estimation is carried out by the method of moments (MOM) for fading channels modeled by probability distributions η−μ and κ−μ, considering M-ary quadrature amplitude modulation (M-QAM) with constellation energy normalized to one. New expressions are presented for the SNR estimation and for the mean, variance, and normalized mean square error (NMSE) of the estimates, obtained by a statistical linearization argument. Additionally, it is shown how to obtain the SNR estimate for Nakagami-m channel from the estimation derived for the models η−μ and κ−μ. The results obtained from the analytical expressions are corroborated by simulation results and show that the MOM is a suitable alternative for scenarios in which the mathematical tractability does not suggest the application of other estimation techniques. More... »

PAGES

20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-019-0607-7

DOI

http://dx.doi.org/10.1186/s13634-019-0607-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112852148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Campina Grande", 
          "id": "https://www.grid.ac/institutes/grid.411182.f", 
          "name": [
            "Federal University of Campina Grande and Institute for Advanced Studies in Communications, Campina Grande, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lira de Queiroz", 
        "givenName": "Wamberto Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Campina Grande", 
          "id": "https://www.grid.ac/institutes/grid.411182.f", 
          "name": [
            "Federal University of Campina Grande and Institute for Advanced Studies in Communications, Campina Grande, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brito Teixeira de Almeida", 
        "givenName": "Danilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Pernambuco", 
          "id": "https://www.grid.ac/institutes/grid.411227.3", 
          "name": [
            "Polytechnic School of Pernambuco, University of Pernambuco, Recife, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madeiro", 
        "givenName": "Francisco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.411216.1", 
          "name": [
            "Department of Electrical Engineering, Federal University of Para\u00edba, Jo\u00e3o Pessoa, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ara\u00fajo Lopes", 
        "givenName": "Waslon Terllizzie", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.adhoc.2012.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004073550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-012-0505-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015830038", 
          "https://doi.org/10.1007/s11277-012-0505-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1499-2011-48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026186721", 
          "https://doi.org/10.1186/1687-1499-2011-48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-016-3503-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032788857", 
          "https://doi.org/10.1007/s11277-016-3503-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-016-3503-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032788857", 
          "https://doi.org/10.1007/s11277-016-3503-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31006-5_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032930288", 
          "https://doi.org/10.1007/978-3-642-31006-5_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11235-015-0124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040889171", 
          "https://doi.org/10.1007/s11235-015-0124-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-008-9593-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045198481", 
          "https://doi.org/10.1007/s11277-008-9593-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/26.871393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061138653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2014.2356473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061350840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/map.2007.370983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061384078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2002.800818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061555059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2006.873995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061556272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2010.093010.080568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061557910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcomm.2011.080111.090627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061558212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2009.2036069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061801942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2010.2074197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2131137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2194707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2328328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2364017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2010.02.081719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061827144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2015.2403325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061829709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11235-017-0327-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085571140", 
          "https://doi.org/10.1007/s11235-017-0327-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11235-017-0327-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085571140", 
          "https://doi.org/10.1007/s11235-017-0327-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iswcs.2008.4726046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093269830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vtcspring.2016.7504478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094136432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094733111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wimob.2014.6962233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095066877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/spawc.2010.5671005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095364766"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In this paper, signal-to-noise ratio (SNR) estimation is carried out by the method of moments (MOM) for fading channels modeled by probability distributions \u03b7\u2212\u03bc and \u03ba\u2212\u03bc, considering M-ary quadrature amplitude modulation (M-QAM) with constellation energy normalized to one. New expressions are presented for the SNR estimation and for the mean, variance, and normalized mean square error (NMSE) of the estimates, obtained by a statistical linearization argument. Additionally, it is shown how to obtain the SNR estimate for Nakagami-m channel from the estimation derived for the models \u03b7\u2212\u03bc and \u03ba\u2212\u03bc. The results obtained from the analytical expressions are corroborated by simulation results and show that the MOM is a suitable alternative for scenarios in which the mathematical tractability does not suggest the application of other estimation techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-019-0607-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Signal-to-noise ratio estimation for M-QAM signals in \u03b7\u2212\u03bcand \u03ba\u2212\u03bcfading channels", 
    "pagination": "20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46ac414521db1658334dce77fa628db9da652ba8673882d14482e82657be181a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-019-0607-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112852148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-019-0607-7", 
      "https://app.dimensions.ai/details/publication/pub.1112852148"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53990_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-019-0607-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0607-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0607-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0607-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-019-0607-7'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-019-0607-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb169fe4e7eff4ccda07bfb6258f52ba4
4 schema:citation sg:pub.10.1007/978-3-642-31006-5_38
5 sg:pub.10.1007/s11235-015-0124-4
6 sg:pub.10.1007/s11235-017-0327-y
7 sg:pub.10.1007/s11277-008-9593-z
8 sg:pub.10.1007/s11277-012-0505-x
9 sg:pub.10.1007/s11277-016-3503-6
10 sg:pub.10.1186/1687-1499-2011-48
11 https://doi.org/10.1016/j.adhoc.2012.11.002
12 https://doi.org/10.1109/26.871393
13 https://doi.org/10.1109/icassp.2007.366238
14 https://doi.org/10.1109/iswcs.2008.4726046
15 https://doi.org/10.1109/lcomm.2014.2356473
16 https://doi.org/10.1109/map.2007.370983
17 https://doi.org/10.1109/spawc.2010.5671005
18 https://doi.org/10.1109/tcomm.2002.800818
19 https://doi.org/10.1109/tcomm.2006.873995
20 https://doi.org/10.1109/tcomm.2010.093010.080568
21 https://doi.org/10.1109/tcomm.2011.080111.090627
22 https://doi.org/10.1109/tsp.2009.2036069
23 https://doi.org/10.1109/tsp.2010.2074197
24 https://doi.org/10.1109/tsp.2011.2131137
25 https://doi.org/10.1109/tsp.2012.2194707
26 https://doi.org/10.1109/tsp.2014.2328328
27 https://doi.org/10.1109/tsp.2014.2364017
28 https://doi.org/10.1109/twc.2010.02.081719
29 https://doi.org/10.1109/twc.2015.2403325
30 https://doi.org/10.1109/vtcspring.2016.7504478
31 https://doi.org/10.1109/wimob.2014.6962233
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description In this paper, signal-to-noise ratio (SNR) estimation is carried out by the method of moments (MOM) for fading channels modeled by probability distributions η−μ and κ−μ, considering M-ary quadrature amplitude modulation (M-QAM) with constellation energy normalized to one. New expressions are presented for the SNR estimation and for the mean, variance, and normalized mean square error (NMSE) of the estimates, obtained by a statistical linearization argument. Additionally, it is shown how to obtain the SNR estimate for Nakagami-m channel from the estimation derived for the models η−μ and κ−μ. The results obtained from the analytical expressions are corroborated by simulation results and show that the MOM is a suitable alternative for scenarios in which the mathematical tractability does not suggest the application of other estimation techniques.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N5cca01c1916949fca86108fef0f7724b
39 Ndc0c933d7c47484c9a03f4092306b9ab
40 sg:journal.1357355
41 schema:name Signal-to-noise ratio estimation for M-QAM signals in η−μand κ−μfading channels
42 schema:pagination 20
43 schema:productId N0b8bfb6dd96e4fddb44127045bb0ed48
44 N52c5120610694da5bd28a8f01f225b8d
45 N9ce06f8a2fba4df7975dfaf30fbcb417
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112852148
47 https://doi.org/10.1186/s13634-019-0607-7
48 schema:sdDatePublished 2019-04-11T12:12
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N23ff0a62bc0147d48558ba79ffd254d6
51 schema:url https://link.springer.com/10.1186%2Fs13634-019-0607-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0b8bfb6dd96e4fddb44127045bb0ed48 schema:name dimensions_id
56 schema:value pub.1112852148
57 rdf:type schema:PropertyValue
58 N23ff0a62bc0147d48558ba79ffd254d6 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N3c0e870f2cd84dc3aa4c0cd12cdf582d schema:affiliation https://www.grid.ac/institutes/grid.411182.f
61 schema:familyName Lira de Queiroz
62 schema:givenName Wamberto José
63 rdf:type schema:Person
64 N52c5120610694da5bd28a8f01f225b8d schema:name readcube_id
65 schema:value 46ac414521db1658334dce77fa628db9da652ba8673882d14482e82657be181a
66 rdf:type schema:PropertyValue
67 N5cca01c1916949fca86108fef0f7724b schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N78740ac23db946c890910ac6b02c612f schema:affiliation https://www.grid.ac/institutes/grid.411182.f
70 schema:familyName Brito Teixeira de Almeida
71 schema:givenName Danilo
72 rdf:type schema:Person
73 N9ce06f8a2fba4df7975dfaf30fbcb417 schema:name doi
74 schema:value 10.1186/s13634-019-0607-7
75 rdf:type schema:PropertyValue
76 Na67701ca5abb49d3a562891fdcfe121a rdf:first Nc3366ed875a348a6a38e49c06ba097c1
77 rdf:rest rdf:nil
78 Nb169fe4e7eff4ccda07bfb6258f52ba4 rdf:first N3c0e870f2cd84dc3aa4c0cd12cdf582d
79 rdf:rest Nf999b99978d74673b64cde8cd8516640
80 Nbf71cfe406464240b7c19ee61fc4e554 rdf:first Nc1c61b215e2944288115d08654027992
81 rdf:rest Na67701ca5abb49d3a562891fdcfe121a
82 Nc1c61b215e2944288115d08654027992 schema:affiliation https://www.grid.ac/institutes/grid.411227.3
83 schema:familyName Madeiro
84 schema:givenName Francisco
85 rdf:type schema:Person
86 Nc3366ed875a348a6a38e49c06ba097c1 schema:affiliation https://www.grid.ac/institutes/grid.411216.1
87 schema:familyName Araújo Lopes
88 schema:givenName Waslon Terllizzie
89 rdf:type schema:Person
90 Ndc0c933d7c47484c9a03f4092306b9ab schema:volumeNumber 2019
91 rdf:type schema:PublicationVolume
92 Nf999b99978d74673b64cde8cd8516640 rdf:first N78740ac23db946c890910ac6b02c612f
93 rdf:rest Nbf71cfe406464240b7c19ee61fc4e554
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:journal.1357355 schema:issn 1687-0433
101 1687-6172
102 schema:name Applied Signal Processing
103 rdf:type schema:Periodical
104 sg:pub.10.1007/978-3-642-31006-5_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032930288
105 https://doi.org/10.1007/978-3-642-31006-5_38
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11235-015-0124-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889171
108 https://doi.org/10.1007/s11235-015-0124-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11235-017-0327-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085571140
111 https://doi.org/10.1007/s11235-017-0327-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11277-008-9593-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045198481
114 https://doi.org/10.1007/s11277-008-9593-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11277-012-0505-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015830038
117 https://doi.org/10.1007/s11277-012-0505-x
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11277-016-3503-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032788857
120 https://doi.org/10.1007/s11277-016-3503-6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1687-1499-2011-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186721
123 https://doi.org/10.1186/1687-1499-2011-48
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.adhoc.2012.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004073550
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/26.871393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061138653
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icassp.2007.366238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094733111
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/iswcs.2008.4726046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093269830
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/lcomm.2014.2356473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061350840
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/map.2007.370983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061384078
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/spawc.2010.5671005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095364766
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tcomm.2002.800818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061555059
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tcomm.2006.873995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061556272
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tcomm.2010.093010.080568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061557910
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tcomm.2011.080111.090627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061558212
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tsp.2009.2036069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061801942
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tsp.2010.2074197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802383
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tsp.2011.2131137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802656
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tsp.2012.2194707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803287
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tsp.2014.2328328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804389
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tsp.2014.2364017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804600
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/twc.2010.02.081719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827144
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/twc.2015.2403325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061829709
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/vtcspring.2016.7504478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094136432
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/wimob.2014.6962233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095066877
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.411182.f schema:alternateName Federal University of Campina Grande
168 schema:name Federal University of Campina Grande and Institute for Advanced Studies in Communications, Campina Grande, Brazil
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.411216.1 schema:alternateName Federal University of Paraíba
171 schema:name Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Brazil
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.411227.3 schema:alternateName Federal University of Pernambuco
174 schema:name Polytechnic School of Pernambuco, University of Pernambuco, Recife, Brazil
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...