Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Michaela Novosadová, Pavel Rajmic, Michal Šorel

ABSTRACT

Segmentation and denoising of signals often rely on the polynomial model which assumes that every segment is a polynomial of a certain degree and that the segments are modeled independently of each other. Segment borders (breakpoints) correspond to positions in the signal where the model changes its polynomial representation. Several signal denoising methods successfully combine the polynomial assumption with sparsity. In this work, we follow on this and show that using orthogonal polynomials instead of other systems in the model is beneficial when segmenting signals corrupted by noise. The switch to orthogonal bases brings better resolving of the breakpoints, removes the need for including additional parameters and their tuning, and brings numerical stability. Last but not the least, it comes for free! More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-018-0598-9

DOI

http://dx.doi.org/10.1186/s13634-018-0598-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111656547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brno University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Signal Processing Laboratory (SPLab), Brno University of Technology, Technick\u00e1 12, 616 00, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novosadov\u00e1", 
        "givenName": "Michaela", 
        "id": "sg:person.010665221062.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665221062.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brno University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Signal Processing Laboratory (SPLab), Brno University of Technology, Technick\u00e1 12, 616 00, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajmic", 
        "givenName": "Pavel", 
        "id": "sg:person.013060153165.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060153165.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information Theory and Automation", 
          "id": "https://www.grid.ac/institutes/grid.424990.2", 
          "name": [
            "The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 4, 18208, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160orel", 
        "givenName": "Michal", 
        "id": "sg:person.01370616722.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370616722.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/lsp.2014.2322123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0437847100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023279122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-012-0245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027180321", 
          "https://doi.org/10.1007/s10957-012-0245-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-008-9045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032880932", 
          "https://doi.org/10.1007/s00041-008-9045-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-008-9045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032880932", 
          "https://doi.org/10.1007/s00041-008-9045-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34141-0_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034016397", 
          "https://doi.org/10.1007/978-3-642-34141-0_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2016.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041641182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2012.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045803327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048778014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2005.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048778014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051704052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jat.2011.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051862067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-spr.2011.0086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/79.799930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2013.2278339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2014.2349356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2015.2407321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061379152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2214219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2015.2411220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070690274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130948793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140998585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1023865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aos1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064394030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1061199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092583267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icumt.2016.7765379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093198831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3dv.2016.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093838265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2016.7760941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095073209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2017.8076092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095231470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icecs.2003.1301820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095704702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7953017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095973011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2017.7953017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095973011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14736/kyb-2017-6-1131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100382686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108475210", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Segmentation and denoising of signals often rely on the polynomial model which assumes that every segment is a polynomial of a certain degree and that the segments are modeled independently of each other. Segment borders (breakpoints) correspond to positions in the signal where the model changes its polynomial representation. Several signal denoising methods successfully combine the polynomial assumption with sparsity. In this work, we follow on this and show that using orthogonal polynomials instead of other systems in the model is beneficial when segmenting signals corrupted by noise. The switch to orthogonal bases brings better resolving of the breakpoints, removes the need for including additional parameters and their tuning, and brings numerical stability. Last but not the least, it comes for free!", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-018-0598-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2019"
      }
    ], 
    "name": "Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a543a392c8cd19e57adb09752436cd8f9a0a179b24c166573cd4c2605f37fd2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-018-0598-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111656547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-018-0598-9", 
      "https://app.dimensions.ai/details/publication/pub.1111656547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100794_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-018-0598-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-018-0598-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-018-0598-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-018-0598-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-018-0598-9'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-018-0598-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0bffbe6ff4244be6b710d59291ee6fbb
4 schema:citation sg:pub.10.1007/978-3-642-34141-0_17
5 sg:pub.10.1007/s00041-008-9045-x
6 sg:pub.10.1007/s10957-012-0245-9
7 https://app.dimensions.ai/details/publication/pub.1108475210
8 https://doi.org/10.1002/mrm.22595
9 https://doi.org/10.1016/j.acha.2005.03.005
10 https://doi.org/10.1016/j.acha.2012.03.006
11 https://doi.org/10.1016/j.jat.2011.06.005
12 https://doi.org/10.1016/j.sigpro.2016.11.019
13 https://doi.org/10.1049/iet-spr.2011.0086
14 https://doi.org/10.1073/pnas.0437847100
15 https://doi.org/10.1109/3dv.2016.79
16 https://doi.org/10.1109/79.799930
17 https://doi.org/10.1109/icassp.2017.7953017
18 https://doi.org/10.1109/icecs.2003.1301820
19 https://doi.org/10.1109/icumt.2016.7765379
20 https://doi.org/10.1109/lsp.2013.2278339
21 https://doi.org/10.1109/lsp.2014.2322123
22 https://doi.org/10.1109/lsp.2014.2349356
23 https://doi.org/10.1109/lsp.2015.2407321
24 https://doi.org/10.1109/tsp.2012.2214219
25 https://doi.org/10.1109/tsp.2015.2411220
26 https://doi.org/10.1109/tsp.2016.7760941
27 https://doi.org/10.1109/tsp.2017.8076092
28 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
29 https://doi.org/10.1137/070690274
30 https://doi.org/10.1137/130948793
31 https://doi.org/10.1137/140998585
32 https://doi.org/10.1137/15m1023865
33 https://doi.org/10.1137/16m1061199
34 https://doi.org/10.1214/13-aos1189
35 https://doi.org/10.14736/kyb-2017-6-1131
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Segmentation and denoising of signals often rely on the polynomial model which assumes that every segment is a polynomial of a certain degree and that the segments are modeled independently of each other. Segment borders (breakpoints) correspond to positions in the signal where the model changes its polynomial representation. Several signal denoising methods successfully combine the polynomial assumption with sparsity. In this work, we follow on this and show that using orthogonal polynomials instead of other systems in the model is beneficial when segmenting signals corrupted by noise. The switch to orthogonal bases brings better resolving of the breakpoints, removes the need for including additional parameters and their tuning, and brings numerical stability. Last but not the least, it comes for free!
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf Nb7df5d64e3a748a8af94b091eb8a1365
43 Ne864420bcd074391b8a2b3c862bbc35b
44 sg:journal.1357355
45 schema:name Orthogonality is superiority in piecewise-polynomial signal segmentation and denoising
46 schema:pagination 6
47 schema:productId N7d6f06c035b046f283003fadb144bf06
48 N8e7303caaefa4a78a1394733e644e370
49 Nd08d0f9353df4c4c932e67bc95dc91c4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111656547
51 https://doi.org/10.1186/s13634-018-0598-9
52 schema:sdDatePublished 2019-04-11T08:56
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N4c3b111d2a1a4bf3bcf7db0e91d928b3
55 schema:url https://link.springer.com/10.1186%2Fs13634-018-0598-9
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0bffbe6ff4244be6b710d59291ee6fbb rdf:first sg:person.010665221062.54
60 rdf:rest N774b6c05eb1142939072d8e1516d05ef
61 N4c3b111d2a1a4bf3bcf7db0e91d928b3 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N774b6c05eb1142939072d8e1516d05ef rdf:first sg:person.013060153165.22
64 rdf:rest Nd4104ef3146e46c4b4a431dcf5602254
65 N7d6f06c035b046f283003fadb144bf06 schema:name doi
66 schema:value 10.1186/s13634-018-0598-9
67 rdf:type schema:PropertyValue
68 N8e7303caaefa4a78a1394733e644e370 schema:name readcube_id
69 schema:value 3a543a392c8cd19e57adb09752436cd8f9a0a179b24c166573cd4c2605f37fd2
70 rdf:type schema:PropertyValue
71 Nb7df5d64e3a748a8af94b091eb8a1365 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nd08d0f9353df4c4c932e67bc95dc91c4 schema:name dimensions_id
74 schema:value pub.1111656547
75 rdf:type schema:PropertyValue
76 Nd4104ef3146e46c4b4a431dcf5602254 rdf:first sg:person.01370616722.53
77 rdf:rest rdf:nil
78 Ne864420bcd074391b8a2b3c862bbc35b schema:volumeNumber 2019
79 rdf:type schema:PublicationVolume
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1357355 schema:issn 1687-0433
87 1687-6172
88 schema:name Applied Signal Processing
89 rdf:type schema:Periodical
90 sg:person.010665221062.54 schema:affiliation https://www.grid.ac/institutes/grid.4994.0
91 schema:familyName Novosadová
92 schema:givenName Michaela
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665221062.54
94 rdf:type schema:Person
95 sg:person.013060153165.22 schema:affiliation https://www.grid.ac/institutes/grid.4994.0
96 schema:familyName Rajmic
97 schema:givenName Pavel
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013060153165.22
99 rdf:type schema:Person
100 sg:person.01370616722.53 schema:affiliation https://www.grid.ac/institutes/grid.424990.2
101 schema:familyName Šorel
102 schema:givenName Michal
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370616722.53
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-642-34141-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034016397
106 https://doi.org/10.1007/978-3-642-34141-0_17
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00041-008-9045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032880932
109 https://doi.org/10.1007/s00041-008-9045-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10957-012-0245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027180321
112 https://doi.org/10.1007/s10957-012-0245-9
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1108475210 schema:CreativeWork
115 https://doi.org/10.1002/mrm.22595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051704052
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.acha.2005.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048778014
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.acha.2012.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045803327
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jat.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051862067
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.sigpro.2016.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041641182
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/iet-spr.2011.0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838256
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.0437847100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023279122
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/3dv.2016.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093838265
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/79.799930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232046
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icassp.2017.7953017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095973011
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/icecs.2003.1301820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095704702
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/icumt.2016.7765379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093198831
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/lsp.2013.2278339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378496
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/lsp.2014.2322123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020920530
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/lsp.2014.2349356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378892
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/lsp.2015.2407321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061379152
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tsp.2012.2214219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803500
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tsp.2015.2411220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804797
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tsp.2016.7760941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095073209
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tsp.2017.8076092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095231470
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/070690274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851165
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1137/130948793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871625
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/140998585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873095
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1137/15m1023865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873750
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1137/16m1061199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092583267
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1214/13-aos1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394030
168 rdf:type schema:CreativeWork
169 https://doi.org/10.14736/kyb-2017-6-1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100382686
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.424990.2 schema:alternateName Institute of Information Theory and Automation
172 schema:name The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou věží 4, 18208, Prague, Czech Republic
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.4994.0 schema:alternateName Brno University of Technology
175 schema:name Signal Processing Laboratory (SPLab), Brno University of Technology, Technická 12, 616 00, Brno, Czech Republic
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...