Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Chenguang Shi, Sana Salous, Fei Wang, Jianjiang Zhou

ABSTRACT

In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver. More... »

PAGES

111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-016-0411-6

DOI

http://dx.doi.org/10.1186/s13634-016-0411-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047295635

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27853467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Chenguang", 
        "id": "sg:person.07414674316.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414674316.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salous", 
        "givenName": "Sana", 
        "id": "sg:person.013570661313.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570661313.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fei", 
        "id": "sg:person.013736176371.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jianjiang", 
        "id": "sg:person.014533556771.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533556771.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/654561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0293-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025373752", 
          "https://doi.org/10.1186/s13634-015-0293-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0293-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025373752", 
          "https://doi.org/10.1186/s13634-015-0293-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-spr.2013.0187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-rsn:20041056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056859006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/7.722721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061215357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsee.2014.00115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061319359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/maes.2006.1635166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061381111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/maes.2012.6329156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061381662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2014.140093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061486490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2010.2052573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061498836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2009.2032456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061801882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2015.2483485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061805205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2016.2566610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061805621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4218/etrij.16.0114.1230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072379514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-016-0411-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems", 
    "pagination": "111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e14d3845b0aa81ab9e9dd592687dbed581ca2cbf122cc3e340b3b8276937ce9c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27853467"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101480232"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-016-0411-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047295635"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-016-0411-6", 
      "https://app.dimensions.ai/details/publication/pub.1047295635"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s13634-016-0411-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0411-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0411-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0411-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0411-6'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-016-0411-6 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N4c6c0b03d9454c96a667b4e2b2be00a2
4 schema:citation sg:pub.10.1186/s13634-015-0293-z
5 https://doi.org/10.1049/iet-spr.2013.0187
6 https://doi.org/10.1049/ip-rsn:20041056
7 https://doi.org/10.1109/7.722721
8 https://doi.org/10.1109/jsee.2014.00115
9 https://doi.org/10.1109/maes.2006.1635166
10 https://doi.org/10.1109/maes.2012.6329156
11 https://doi.org/10.1109/taes.2014.140093
12 https://doi.org/10.1109/tap.2010.2052573
13 https://doi.org/10.1109/tsp.2009.2032456
14 https://doi.org/10.1109/tsp.2015.2483485
15 https://doi.org/10.1109/tsp.2016.2566610
16 https://doi.org/10.1155/2014/654561
17 https://doi.org/10.4218/etrij.16.0114.1230
18 schema:datePublished 2016-12
19 schema:datePublishedReg 2016-12-01
20 schema:description In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N04de1c1dd58949faabca5656f3bb7125
25 Ne8c66d2890904d4880ef051092680526
26 sg:journal.1357355
27 schema:name Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems
28 schema:pagination 111
29 schema:productId N09b0d07efd1c4fb5b2d85316d5ea1656
30 N4dc6f916854d44268abb15c17131eb7a
31 N50a4909d75d7467b9e23ba8dce9e45d0
32 N5fb49002eafd418ba1e8ada5a4018c51
33 Nc5efeff9469341758e987006add0c74a
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047295635
35 https://doi.org/10.1186/s13634-016-0411-6
36 schema:sdDatePublished 2019-04-10T21:44
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N9a06345e6ec643bebf49b85e7aecd739
39 schema:url http://link.springer.com/10.1186/s13634-016-0411-6
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N04de1c1dd58949faabca5656f3bb7125 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N09b0d07efd1c4fb5b2d85316d5ea1656 schema:name readcube_id
46 schema:value e14d3845b0aa81ab9e9dd592687dbed581ca2cbf122cc3e340b3b8276937ce9c
47 rdf:type schema:PropertyValue
48 N4c6c0b03d9454c96a667b4e2b2be00a2 rdf:first sg:person.07414674316.03
49 rdf:rest Nb18163566ccf4b8f881457a5ca4dfbc9
50 N4dc6f916854d44268abb15c17131eb7a schema:name dimensions_id
51 schema:value pub.1047295635
52 rdf:type schema:PropertyValue
53 N50a4909d75d7467b9e23ba8dce9e45d0 schema:name nlm_unique_id
54 schema:value 101480232
55 rdf:type schema:PropertyValue
56 N5fb49002eafd418ba1e8ada5a4018c51 schema:name pubmed_id
57 schema:value 27853467
58 rdf:type schema:PropertyValue
59 N7cabfd9244e544168cd6ae5997fab3b1 rdf:first sg:person.013736176371.59
60 rdf:rest Na4bd358235cd4d7f80d384d5a3951635
61 N9a06345e6ec643bebf49b85e7aecd739 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Na4bd358235cd4d7f80d384d5a3951635 rdf:first sg:person.014533556771.16
64 rdf:rest rdf:nil
65 Nb18163566ccf4b8f881457a5ca4dfbc9 rdf:first sg:person.013570661313.26
66 rdf:rest N7cabfd9244e544168cd6ae5997fab3b1
67 Nc5efeff9469341758e987006add0c74a schema:name doi
68 schema:value 10.1186/s13634-016-0411-6
69 rdf:type schema:PropertyValue
70 Ne8c66d2890904d4880ef051092680526 schema:volumeNumber 2016
71 rdf:type schema:PublicationVolume
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
76 schema:name Electrical and Electronic Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1357355 schema:issn 1687-0433
79 1687-6172
80 schema:name Applied Signal Processing
81 rdf:type schema:Periodical
82 sg:person.013570661313.26 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
83 schema:familyName Salous
84 schema:givenName Sana
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570661313.26
86 rdf:type schema:Person
87 sg:person.013736176371.59 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
88 schema:familyName Wang
89 schema:givenName Fei
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59
91 rdf:type schema:Person
92 sg:person.014533556771.16 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
93 schema:familyName Zhou
94 schema:givenName Jianjiang
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533556771.16
96 rdf:type schema:Person
97 sg:person.07414674316.03 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
98 schema:familyName Shi
99 schema:givenName Chenguang
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414674316.03
101 rdf:type schema:Person
102 sg:pub.10.1186/s13634-015-0293-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025373752
103 https://doi.org/10.1186/s13634-015-0293-z
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1049/iet-spr.2013.0187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838456
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1049/ip-rsn:20041056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056859006
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/7.722721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215357
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/jsee.2014.00115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061319359
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/maes.2006.1635166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061381111
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/maes.2012.6329156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061381662
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/taes.2014.140093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061486490
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tap.2010.2052573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061498836
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tsp.2009.2032456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061801882
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tsp.2015.2483485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061805205
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tsp.2016.2566610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061805621
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1155/2014/654561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687727
128 rdf:type schema:CreativeWork
129 https://doi.org/10.4218/etrij.16.0114.1230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072379514
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
132 schema:name Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...