Practical security and privacy attacks against biometric hashing using sparse recovery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Berkay Topcu, Cagatay Karabat, Matin Azadmanesh, Hakan Erdogan

ABSTRACT

Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user’s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks. More... »

PAGES

100

References to SciGraph publications

  • 2005. Fuzzy Vault for Fingerprints in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2010. Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction for Raw Data Reconstruction in COMMUNICATIONS AND MULTIMEDIA SECURITY
  • 2001-08-17. An Analysis of Minutiae Matching Strength in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2005. An Analysis on Accuracy of Cancelable Biometrics Based on BioHashing in KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS
  • 2008. Biometric Template Security in APPLIED SIGNAL PROCESSING
  • 2004-05. Robust Real-Time Face Detection in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2006-12. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and Discretization in APPLIED SIGNAL PROCESSING
  • 2009. Handbook of Fingerprint Recognition in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1

    DOI

    http://dx.doi.org/10.1186/s13634-016-0396-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045239596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey", 
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Topcu", 
            "givenName": "Berkay", 
            "id": "sg:person.011117341471.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117341471.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scientific and Technological Research Council of Turkey", 
              "id": "https://www.grid.ac/institutes/grid.426409.d", 
              "name": [
                "Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karabat", 
            "givenName": "Cagatay", 
            "id": "sg:person.012165140727.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012165140727.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azadmanesh", 
            "givenName": "Matin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sabanc\u0131 University", 
              "id": "https://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erdogan", 
            "givenName": "Hakan", 
            "id": "sg:person.014752772003.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752772003.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.838998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001257624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001944608", 
              "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2004.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003858561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2006.05.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004991612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2009.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006565516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553939_162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010358908", 
              "https://doi.org/10.1007/11553939_162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553939_162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010358908", 
              "https://doi.org/10.1007/11553939_162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010537878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13241-4_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019713000", 
              "https://doi.org/10.1007/978-3-642-13241-4_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13241-4_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019713000", 
              "https://doi.org/10.1007/978-3-642-13241-4_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1524/itit.2012.0676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019812724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45344-x_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024254699", 
              "https://doi.org/10.1007/3-540-45344-x_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45344-x_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024254699", 
              "https://doi.org/10.1007/3-540-45344-x_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/319709.319714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024621046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11527923_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025985134", 
              "https://doi.org/10.1007/11527923_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11527923_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025985134", 
              "https://doi.org/10.1007/11527923_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1028717201", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84882-254-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028717201", 
              "https://doi.org/10.1007/978-1-84882-254-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-84882-254-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028717201", 
              "https://doi.org/10.1007/978-1-84882-254-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2014.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032191477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035373508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/579416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036338058", 
              "https://doi.org/10.1155/2008/579416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/jocn.1991.3.1.71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043225769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.839165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048878631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.839976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052352720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msecp.2003.1193209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061421785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2007.914731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061422954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsvt.2006.873780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061574856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tifs.2010.2046984", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061629722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2012.2234823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061654246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2009.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2007/59125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063202337", 
              "https://doi.org/10.1155/2007/59125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iih-msp.2009.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094233101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ciss.2008.4558487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094248432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icarcv.2010.5707216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094431392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2010.698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094682701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cib.2009.4925692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094729925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0004524103630370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099381151"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user\u2019s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13634-016-0396-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3783552", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1357355", 
            "issn": [
              "1687-6172", 
              "1687-0433"
            ], 
            "name": "Applied Signal Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "name": "Practical security and privacy attacks against biometric hashing using sparse recovery", 
        "pagination": "100", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d77dfe2ac8c94e4005a334c4a0eda675fb895a3d77473c25f52662d46ec25b1e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13634-016-0396-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045239596"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13634-016-0396-1", 
          "https://app.dimensions.ai/details/publication/pub.1045239596"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000593.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s13634-016-0396-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    193 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13634-016-0396-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ncdfc05ab39b849c5b1bb4338498673e7
    4 schema:citation sg:pub.10.1007/11527923_32
    5 sg:pub.10.1007/11553939_162
    6 sg:pub.10.1007/3-540-45344-x_32
    7 sg:pub.10.1007/978-1-84882-254-2
    8 sg:pub.10.1007/978-3-642-13241-4_17
    9 sg:pub.10.1023/b:visi.0000013087.49260.fb
    10 sg:pub.10.1155/2007/59125
    11 sg:pub.10.1155/2008/579416
    12 https://app.dimensions.ai/details/publication/pub.1028717201
    13 https://doi.org/10.1002/cpa.21442
    14 https://doi.org/10.1016/j.acha.2009.04.002
    15 https://doi.org/10.1016/j.patcog.2004.04.011
    16 https://doi.org/10.1016/j.patcog.2005.10.025
    17 https://doi.org/10.1016/j.patcog.2006.05.030
    18 https://doi.org/10.1016/j.patcog.2014.03.003
    19 https://doi.org/10.1109/cib.2009.4925692
    20 https://doi.org/10.1109/ciss.2008.4558487
    21 https://doi.org/10.1109/icarcv.2010.5707216
    22 https://doi.org/10.1109/icpr.2010.698
    23 https://doi.org/10.1109/iih-msp.2009.121
    24 https://doi.org/10.1109/msecp.2003.1193209
    25 https://doi.org/10.1109/msp.2007.914731
    26 https://doi.org/10.1109/tcsvt.2006.873780
    27 https://doi.org/10.1109/tifs.2010.2046984
    28 https://doi.org/10.1109/tit.2012.2234823
    29 https://doi.org/10.1109/tpami.2009.76
    30 https://doi.org/10.1117/12.838998
    31 https://doi.org/10.1117/12.839165
    32 https://doi.org/10.1117/12.839976
    33 https://doi.org/10.1145/319709.319714
    34 https://doi.org/10.1162/jocn.1991.3.1.71
    35 https://doi.org/10.1524/itit.2012.0676
    36 https://doi.org/10.5220/0004524103630370
    37 schema:datePublished 2016-12
    38 schema:datePublishedReg 2016-12-01
    39 schema:description Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user’s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N8539f69fdd3347c1af95f0e0f1bc8487
    44 N8a1dd1340a094152823e5650e992856d
    45 sg:journal.1357355
    46 schema:name Practical security and privacy attacks against biometric hashing using sparse recovery
    47 schema:pagination 100
    48 schema:productId N3357285b5e7047d5bb3e114b0701df6d
    49 Nc7888dc4f00241b9a01c0811dd721c4f
    50 Ne525b1d2893a4a5899197e5c72b3a650
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045239596
    52 https://doi.org/10.1186/s13634-016-0396-1
    53 schema:sdDatePublished 2019-04-10T22:46
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N55e700d934354a5ca1dfefe083988701
    56 schema:url http://link.springer.com/10.1186/s13634-016-0396-1
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N3357285b5e7047d5bb3e114b0701df6d schema:name readcube_id
    61 schema:value d77dfe2ac8c94e4005a334c4a0eda675fb895a3d77473c25f52662d46ec25b1e
    62 rdf:type schema:PropertyValue
    63 N4b3fb7fffee5462a96bd365d60d7dba1 rdf:first sg:person.014752772003.52
    64 rdf:rest rdf:nil
    65 N55e700d934354a5ca1dfefe083988701 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N5cb5e775fa5d4b2498f782abf4350607 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    68 schema:familyName Azadmanesh
    69 schema:givenName Matin
    70 rdf:type schema:Person
    71 N8539f69fdd3347c1af95f0e0f1bc8487 schema:volumeNumber 2016
    72 rdf:type schema:PublicationVolume
    73 N8a1dd1340a094152823e5650e992856d schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 Nba2e3a02aff44bf0b8030f89e27f07f4 rdf:first sg:person.012165140727.18
    76 rdf:rest Nd16adf58e7d24ffcbf9d77081a4c56db
    77 Nc7888dc4f00241b9a01c0811dd721c4f schema:name doi
    78 schema:value 10.1186/s13634-016-0396-1
    79 rdf:type schema:PropertyValue
    80 Ncdfc05ab39b849c5b1bb4338498673e7 rdf:first sg:person.011117341471.59
    81 rdf:rest Nba2e3a02aff44bf0b8030f89e27f07f4
    82 Nd16adf58e7d24ffcbf9d77081a4c56db rdf:first N5cb5e775fa5d4b2498f782abf4350607
    83 rdf:rest N4b3fb7fffee5462a96bd365d60d7dba1
    84 Ne525b1d2893a4a5899197e5c72b3a650 schema:name dimensions_id
    85 schema:value pub.1045239596
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Information and Computing Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Artificial Intelligence and Image Processing
    92 rdf:type schema:DefinedTerm
    93 sg:grant.3783552 http://pending.schema.org/fundedItem sg:pub.10.1186/s13634-016-0396-1
    94 rdf:type schema:MonetaryGrant
    95 sg:journal.1357355 schema:issn 1687-0433
    96 1687-6172
    97 schema:name Applied Signal Processing
    98 rdf:type schema:Periodical
    99 sg:person.011117341471.59 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    100 schema:familyName Topcu
    101 schema:givenName Berkay
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117341471.59
    103 rdf:type schema:Person
    104 sg:person.012165140727.18 schema:affiliation https://www.grid.ac/institutes/grid.426409.d
    105 schema:familyName Karabat
    106 schema:givenName Cagatay
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012165140727.18
    108 rdf:type schema:Person
    109 sg:person.014752772003.52 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
    110 schema:familyName Erdogan
    111 schema:givenName Hakan
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752772003.52
    113 rdf:type schema:Person
    114 sg:pub.10.1007/11527923_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025985134
    115 https://doi.org/10.1007/11527923_32
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/11553939_162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010358908
    118 https://doi.org/10.1007/11553939_162
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/3-540-45344-x_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024254699
    121 https://doi.org/10.1007/3-540-45344-x_32
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-1-84882-254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717201
    124 https://doi.org/10.1007/978-1-84882-254-2
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-642-13241-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019713000
    127 https://doi.org/10.1007/978-3-642-13241-4_17
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
    130 https://doi.org/10.1023/b:visi.0000013087.49260.fb
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1155/2007/59125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063202337
    133 https://doi.org/10.1155/2007/59125
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1155/2008/579416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036338058
    136 https://doi.org/10.1155/2008/579416
    137 rdf:type schema:CreativeWork
    138 https://app.dimensions.ai/details/publication/pub.1028717201 schema:CreativeWork
    139 https://doi.org/10.1002/cpa.21442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035373508
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.acha.2009.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006565516
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.patcog.2004.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003858561
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.patcog.2005.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010537878
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.patcog.2006.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004991612
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.patcog.2014.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032191477
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/cib.2009.4925692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094729925
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/ciss.2008.4558487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094248432
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/icarcv.2010.5707216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094431392
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/icpr.2010.698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094682701
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/iih-msp.2009.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094233101
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/msecp.2003.1193209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061421785
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/msp.2007.914731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422954
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tcsvt.2006.873780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574856
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tifs.2010.2046984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629722
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tit.2012.2234823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061654246
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/tpami.2009.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743816
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1117/12.838998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001257624
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1117/12.839165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048878631
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1117/12.839976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052352720
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1145/319709.319714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024621046
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1162/jocn.1991.3.1.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043225769
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1524/itit.2012.0676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019812724
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.5220/0004524103630370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099381151
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.426409.d schema:alternateName Scientific and Technological Research Council of Turkey
    188 schema:name Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey
    189 rdf:type schema:Organization
    190 https://www.grid.ac/institutes/grid.5334.1 schema:alternateName Sabancı University
    191 schema:name Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey
    192 Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey
    193 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...