Practical security and privacy attacks against biometric hashing using sparse recovery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09-15

AUTHORS

Berkay Topcu, Cagatay Karabat, Matin Azadmanesh, Hakan Erdogan

ABSTRACT

Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user’s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks. More... »

PAGES

100

References to SciGraph publications

  • 2005. Fuzzy Vault for Fingerprints in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2010. Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction for Raw Data Reconstruction in COMMUNICATIONS AND MULTIMEDIA SECURITY
  • 2001-08-17. An Analysis of Minutiae Matching Strength in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2005. An Analysis on Accuracy of Cancelable Biometrics Based on BioHashing in KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS
  • 2008. Biometric Template Security in EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING
  • 2004-05. Robust Real-Time Face Detection in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2006-12-01. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and Discretization in EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING
  • 2009. Handbook of Fingerprint Recognition in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1

    DOI

    http://dx.doi.org/10.1186/s13634-016-0396-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045239596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey", 
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Topcu", 
            "givenName": "Berkay", 
            "id": "sg:person.011117341471.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117341471.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.426409.d", 
              "name": [
                "Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karabat", 
            "givenName": "Cagatay", 
            "id": "sg:person.012165140727.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012165140727.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azadmanesh", 
            "givenName": "Matin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.5334.1", 
              "name": [
                "Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erdogan", 
            "givenName": "Hakan", 
            "id": "sg:person.014752772003.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752772003.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-84882-254-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028717201", 
              "https://doi.org/10.1007/978-1-84882-254-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2008/579416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036338058", 
              "https://doi.org/10.1155/2008/579416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13241-4_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019713000", 
              "https://doi.org/10.1007/978-3-642-13241-4_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001944608", 
              "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11527923_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025985134", 
              "https://doi.org/10.1007/11527923_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11553939_162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010358908", 
              "https://doi.org/10.1007/11553939_162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2007/59125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063202337", 
              "https://doi.org/10.1155/2007/59125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45344-x_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024254699", 
              "https://doi.org/10.1007/3-540-45344-x_32"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-09-15", 
        "datePublishedReg": "2016-09-15", 
        "description": "Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user\u2019s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13634-016-0396-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3783552", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1371279", 
            "issn": [
              "1687-6172", 
              "1687-0433"
            ], 
            "name": "EURASIP Journal on Advances in Signal Processing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "privacy attacks", 
          "biometric hashing", 
          "practical security", 
          "two-factor authentication method", 
          "detection error tradeoff (DET) curves", 
          "biometric verification method", 
          "equal error rate", 
          "data acquisition scenarios", 
          "privacy leaks", 
          "user's password", 
          "personal password", 
          "biometric images", 
          "authentication method", 
          "biometric features", 
          "attack scenarios", 
          "high security", 
          "security threats", 
          "original image", 
          "practical attacks", 
          "verification method", 
          "password", 
          "attack methods", 
          "binary template", 
          "biometric data", 
          "hashing", 
          "acquisition scenarios", 
          "signal reconstruction", 
          "generation method", 
          "sparse recovery", 
          "security", 
          "biometrics", 
          "error rate", 
          "reconstruction method", 
          "tradeoff curve", 
          "recovery techniques", 
          "attacks", 
          "images", 
          "scenarios", 
          "authentication", 
          "attacker", 
          "hash", 
          "research interest", 
          "method", 
          "database", 
          "performance", 
          "features", 
          "technique", 
          "threat", 
          "reconstruction", 
          "template", 
          "order", 
          "data", 
          "previous literature", 
          "interest", 
          "additional protection", 
          "protection", 
          "literature", 
          "leak", 
          "high levels", 
          "addition", 
          "curves", 
          "rate", 
          "levels", 
          "recovery", 
          "cancelable biometric verification method", 
          "secure binary template", 
          "novel practical security", 
          "closest biometric data", 
          "simple attack methods", 
          "error tradeoff curves", 
          "advanced attack scenarios", 
          "advanced hash generation methods", 
          "hash generation methods"
        ], 
        "name": "Practical security and privacy attacks against biometric hashing using sparse recovery", 
        "pagination": "100", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045239596"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13634-016-0396-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13634-016-0396-1", 
          "https://app.dimensions.ai/details/publication/pub.1045239596"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_687.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13634-016-0396-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0396-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    193 TRIPLES      22 PREDICATES      107 URIs      90 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13634-016-0396-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0804
    4 schema:author Nfbbbf74e734847fa9344e4bb9eab5a21
    5 schema:citation sg:pub.10.1007/11527923_32
    6 sg:pub.10.1007/11553939_162
    7 sg:pub.10.1007/3-540-45344-x_32
    8 sg:pub.10.1007/978-1-84882-254-2
    9 sg:pub.10.1007/978-3-642-13241-4_17
    10 sg:pub.10.1023/b:visi.0000013087.49260.fb
    11 sg:pub.10.1155/2007/59125
    12 sg:pub.10.1155/2008/579416
    13 schema:datePublished 2016-09-15
    14 schema:datePublishedReg 2016-09-15
    15 schema:description Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user’s password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N35e04eeb54344e748d32359f23158442
    20 N4adf8f092375412897088dbd161fe97b
    21 sg:journal.1371279
    22 schema:keywords acquisition scenarios
    23 addition
    24 additional protection
    25 advanced attack scenarios
    26 advanced hash generation methods
    27 attack methods
    28 attack scenarios
    29 attacker
    30 attacks
    31 authentication
    32 authentication method
    33 binary template
    34 biometric data
    35 biometric features
    36 biometric hashing
    37 biometric images
    38 biometric verification method
    39 biometrics
    40 cancelable biometric verification method
    41 closest biometric data
    42 curves
    43 data
    44 data acquisition scenarios
    45 database
    46 detection error tradeoff (DET) curves
    47 equal error rate
    48 error rate
    49 error tradeoff curves
    50 features
    51 generation method
    52 hash
    53 hash generation methods
    54 hashing
    55 high levels
    56 high security
    57 images
    58 interest
    59 leak
    60 levels
    61 literature
    62 method
    63 novel practical security
    64 order
    65 original image
    66 password
    67 performance
    68 personal password
    69 practical attacks
    70 practical security
    71 previous literature
    72 privacy attacks
    73 privacy leaks
    74 protection
    75 rate
    76 reconstruction
    77 reconstruction method
    78 recovery
    79 recovery techniques
    80 research interest
    81 scenarios
    82 secure binary template
    83 security
    84 security threats
    85 signal reconstruction
    86 simple attack methods
    87 sparse recovery
    88 technique
    89 template
    90 threat
    91 tradeoff curve
    92 two-factor authentication method
    93 user's password
    94 verification method
    95 schema:name Practical security and privacy attacks against biometric hashing using sparse recovery
    96 schema:pagination 100
    97 schema:productId N87a6c12cf3bd428b98165069f188fa26
    98 Nda6d4f1020d7409ba129602d5c1fdbde
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045239596
    100 https://doi.org/10.1186/s13634-016-0396-1
    101 schema:sdDatePublished 2021-11-01T18:26
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher Ncef9534d442640b6b717ac51c13626e0
    104 schema:url https://doi.org/10.1186/s13634-016-0396-1
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N35e04eeb54344e748d32359f23158442 schema:issueNumber 1
    109 rdf:type schema:PublicationIssue
    110 N4adf8f092375412897088dbd161fe97b schema:volumeNumber 2016
    111 rdf:type schema:PublicationVolume
    112 N5db75e9c1ca048b895808199f53b7028 rdf:first sg:person.014752772003.52
    113 rdf:rest rdf:nil
    114 N647b34e2dce74d2d947f819a3b8e5953 rdf:first Ne9b5b30623124fbd9a439e5c50e86a08
    115 rdf:rest N5db75e9c1ca048b895808199f53b7028
    116 N87a6c12cf3bd428b98165069f188fa26 schema:name dimensions_id
    117 schema:value pub.1045239596
    118 rdf:type schema:PropertyValue
    119 Ncef9534d442640b6b717ac51c13626e0 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nda6d4f1020d7409ba129602d5c1fdbde schema:name doi
    122 schema:value 10.1186/s13634-016-0396-1
    123 rdf:type schema:PropertyValue
    124 Ne9b5b30623124fbd9a439e5c50e86a08 schema:affiliation grid-institutes:grid.5334.1
    125 schema:familyName Azadmanesh
    126 schema:givenName Matin
    127 rdf:type schema:Person
    128 Nf3ff54cb53944742a42a7d8fa1989667 rdf:first sg:person.012165140727.18
    129 rdf:rest N647b34e2dce74d2d947f819a3b8e5953
    130 Nfbbbf74e734847fa9344e4bb9eab5a21 rdf:first sg:person.011117341471.59
    131 rdf:rest Nf3ff54cb53944742a42a7d8fa1989667
    132 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Information and Computing Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Artificial Intelligence and Image Processing
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Data Format
    140 rdf:type schema:DefinedTerm
    141 sg:grant.3783552 http://pending.schema.org/fundedItem sg:pub.10.1186/s13634-016-0396-1
    142 rdf:type schema:MonetaryGrant
    143 sg:journal.1371279 schema:issn 1687-0433
    144 1687-6172
    145 schema:name EURASIP Journal on Advances in Signal Processing
    146 schema:publisher Springer Nature
    147 rdf:type schema:Periodical
    148 sg:person.011117341471.59 schema:affiliation grid-institutes:grid.5334.1
    149 schema:familyName Topcu
    150 schema:givenName Berkay
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117341471.59
    152 rdf:type schema:Person
    153 sg:person.012165140727.18 schema:affiliation grid-institutes:grid.426409.d
    154 schema:familyName Karabat
    155 schema:givenName Cagatay
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012165140727.18
    157 rdf:type schema:Person
    158 sg:person.014752772003.52 schema:affiliation grid-institutes:grid.5334.1
    159 schema:familyName Erdogan
    160 schema:givenName Hakan
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752772003.52
    162 rdf:type schema:Person
    163 sg:pub.10.1007/11527923_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025985134
    164 https://doi.org/10.1007/11527923_32
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/11553939_162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010358908
    167 https://doi.org/10.1007/11553939_162
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/3-540-45344-x_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024254699
    170 https://doi.org/10.1007/3-540-45344-x_32
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-1-84882-254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717201
    173 https://doi.org/10.1007/978-1-84882-254-2
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-3-642-13241-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019713000
    176 https://doi.org/10.1007/978-3-642-13241-4_17
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
    179 https://doi.org/10.1023/b:visi.0000013087.49260.fb
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1155/2007/59125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063202337
    182 https://doi.org/10.1155/2007/59125
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1155/2008/579416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036338058
    185 https://doi.org/10.1155/2008/579416
    186 rdf:type schema:CreativeWork
    187 grid-institutes:grid.426409.d schema:alternateName Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey
    188 schema:name Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey
    189 rdf:type schema:Organization
    190 grid-institutes:grid.5334.1 schema:alternateName Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey
    191 schema:name Faculty of Science and Natural Engineering, Sabanci University, Orhanli Tuzla, 34956, Istanbul, Turkey
    192 Informatics and Information Security Research Center (BILGEM), The Scientific and Technological Research Council of Turkey (TUBITAK), 41470, Kocaeli, Turkey
    193 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...