Robust and adaptive diffusion-based classification in distributed networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Patricia Binder, Michael Muma, Abdelhak M. Zoubir

ABSTRACT

Distributed adaptive signal processing and communication networking are rapidly advancing research areas which enable new and powerful signal processing tasks, e.g., distributed speech enhancement in adverse environments. An emerging new paradigm is that of multiple devices cooperating in multiple tasks (MDMT). This is different from the classical wireless sensor network (WSN) setup, in which multiple devices perform one single joint task. A crucial first step in order to achieve a benefit, e.g., a better node-specific audio signal enhancement, is the common unique labeling of all relevant sources that are observed by the network. This challenging research question can be addressed by designing adaptive data clustering and classification rules based on a set of noisy unlabeled sensor observations. In this paper, two robust and adaptive distributed hybrid classification algorithms are introduced. They consist of a local clustering phase that uses a small part of the data with a subsequent, fully distributed on-line classification phase. The classification is performed by means of distance-based similarity measures. In order to deal with the presence of outliers, the distances are estimated robustly. An extensive simulation-based performance analysis is provided for the proposed algorithms. The distributed hybrid classification approaches are compared to a benchmark algorithm where the error rates are evaluated in dependence of different WSN parameters. Communication cost and computation time are compared for all algorithms under test. Since both proposed approaches use robust estimators, they are, to a certain degree, insensitive to outliers. Furthermore, they are designed in a way that they are applicable to on-line classification problems. More... »

PAGES

34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13634-016-0331-5

DOI

http://dx.doi.org/10.1186/s13634-016-0331-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007616111


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Signal Processing Group, Technische Universit\u00e4t Darmstadt, 64283, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Binder", 
        "givenName": "Patricia", 
        "id": "sg:person.015414343265.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015414343265.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Signal Processing Group, Technische Universit\u00e4t Darmstadt, 64283, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muma", 
        "givenName": "Michael", 
        "id": "sg:person.010645765323.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645765323.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Signal Processing Group, Technische Universit\u00e4t Darmstadt, 64283, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoubir", 
        "givenName": "Abdelhak M.", 
        "id": "sg:person.013316510015.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-70602-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001673790", 
          "https://doi.org/10.1007/978-3-540-70602-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70602-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001673790", 
          "https://doi.org/10.1007/978-3-540-70602-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44468-9_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014172713", 
          "https://doi.org/10.1007/978-3-662-44468-9_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44468-9_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014172713", 
          "https://doi.org/10.1007/978-3-662-44468-9_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2008.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031350082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038577337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2014.2306253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2011.2114324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061338060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2183773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2003.814623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2009.2033729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061801902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2010.2086450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2196696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2013.2296271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2333560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2014.2350965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2015.2412918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2015.2415755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120876873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177703732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2015.7179080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093289952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icicee.2012.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093530878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2015.7179085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093868126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/milcom.2003.1290169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093898062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afrcon.2015.7331863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094101850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470010940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109503092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470010940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109503092"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Distributed adaptive signal processing and communication networking are rapidly advancing research areas which enable new and powerful signal processing tasks, e.g., distributed speech enhancement in adverse environments. An emerging new paradigm is that of multiple devices cooperating in multiple tasks (MDMT). This is different from the classical wireless sensor network (WSN) setup, in which multiple devices perform one single joint task. A crucial first step in order to achieve a benefit, e.g., a better node-specific audio signal enhancement, is the common unique labeling of all relevant sources that are observed by the network. This challenging research question can be addressed by designing adaptive data clustering and classification rules based on a set of noisy unlabeled sensor observations. In this paper, two robust and adaptive distributed hybrid classification algorithms are introduced. They consist of a local clustering phase that uses a small part of the data with a subsequent, fully distributed on-line classification phase. The classification is performed by means of distance-based similarity measures. In order to deal with the presence of outliers, the distances are estimated robustly. An extensive simulation-based performance analysis is provided for the proposed algorithms. The distributed hybrid classification approaches are compared to a benchmark algorithm where the error rates are evaluated in dependence of different WSN parameters. Communication cost and computation time are compared for all algorithms under test. Since both proposed approaches use robust estimators, they are, to a certain degree, insensitive to outliers. Furthermore, they are designed in a way that they are applicable to on-line classification problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13634-016-0331-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3792295", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Robust and adaptive diffusion-based classification in distributed networks", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24470ffc95f878975ce1e68e6feb21cb741ed4878297effca16ee3cb0429b017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13634-016-0331-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007616111"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13634-016-0331-5", 
      "https://app.dimensions.ai/details/publication/pub.1007616111"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13634-016-0331-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0331-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0331-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0331-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13634-016-0331-5'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13634-016-0331-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N531d7e22ee4241d4a7ad715580380e7b
4 schema:citation sg:pub.10.1007/978-3-540-70602-1
5 sg:pub.10.1007/978-3-662-44468-9_58
6 https://app.dimensions.ai/details/publication/pub.1109503092
7 https://doi.org/10.1002/0470010940
8 https://doi.org/10.1016/j.comnet.2008.05.008
9 https://doi.org/10.1016/j.sigpro.2012.01.003
10 https://doi.org/10.1109/afrcon.2015.7331863
11 https://doi.org/10.1109/icassp.2015.7179080
12 https://doi.org/10.1109/icassp.2015.7179085
13 https://doi.org/10.1109/icicee.2012.303
14 https://doi.org/10.1109/jproc.2014.2306253
15 https://doi.org/10.1109/jstsp.2011.2114324
16 https://doi.org/10.1109/milcom.2003.1290169
17 https://doi.org/10.1109/msp.2012.2183773
18 https://doi.org/10.1109/tsp.2003.814623
19 https://doi.org/10.1109/tsp.2009.2033729
20 https://doi.org/10.1109/tsp.2010.2086450
21 https://doi.org/10.1109/tsp.2012.2196696
22 https://doi.org/10.1109/tsp.2013.2296271
23 https://doi.org/10.1109/tsp.2014.2333560
24 https://doi.org/10.1109/tsp.2014.2350965
25 https://doi.org/10.1109/tsp.2015.2412918
26 https://doi.org/10.1109/tsp.2015.2415755
27 https://doi.org/10.1137/120876873
28 https://doi.org/10.1214/aoms/1177703732
29 https://doi.org/10.1561/2200000051
30 schema:datePublished 2016-12
31 schema:datePublishedReg 2016-12-01
32 schema:description Distributed adaptive signal processing and communication networking are rapidly advancing research areas which enable new and powerful signal processing tasks, e.g., distributed speech enhancement in adverse environments. An emerging new paradigm is that of multiple devices cooperating in multiple tasks (MDMT). This is different from the classical wireless sensor network (WSN) setup, in which multiple devices perform one single joint task. A crucial first step in order to achieve a benefit, e.g., a better node-specific audio signal enhancement, is the common unique labeling of all relevant sources that are observed by the network. This challenging research question can be addressed by designing adaptive data clustering and classification rules based on a set of noisy unlabeled sensor observations. In this paper, two robust and adaptive distributed hybrid classification algorithms are introduced. They consist of a local clustering phase that uses a small part of the data with a subsequent, fully distributed on-line classification phase. The classification is performed by means of distance-based similarity measures. In order to deal with the presence of outliers, the distances are estimated robustly. An extensive simulation-based performance analysis is provided for the proposed algorithms. The distributed hybrid classification approaches are compared to a benchmark algorithm where the error rates are evaluated in dependence of different WSN parameters. Communication cost and computation time are compared for all algorithms under test. Since both proposed approaches use robust estimators, they are, to a certain degree, insensitive to outliers. Furthermore, they are designed in a way that they are applicable to on-line classification problems.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N28f2258998894b9d9ff59b34c4ac808a
37 N3745a29719ad4944ab1efe334c146c9e
38 sg:journal.1357355
39 schema:name Robust and adaptive diffusion-based classification in distributed networks
40 schema:pagination 34
41 schema:productId N2c7790f590694997ac2e7ae50f55e8e2
42 N5ddea76ffffe4e52872928c3cb382f43
43 N781fb715803e42efa7d72a24aef974e2
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007616111
45 https://doi.org/10.1186/s13634-016-0331-5
46 schema:sdDatePublished 2019-04-11T13:08
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N7683bbf9aeec460fb23cdeb6f12aeee2
49 schema:url https://link.springer.com/10.1186%2Fs13634-016-0331-5
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N20dd38ee452d41c39e204ba32ce48e5d rdf:first sg:person.010645765323.85
54 rdf:rest Nb5f5191305e543ab9e80c726f853851c
55 N28f2258998894b9d9ff59b34c4ac808a schema:volumeNumber 2016
56 rdf:type schema:PublicationVolume
57 N2c7790f590694997ac2e7ae50f55e8e2 schema:name dimensions_id
58 schema:value pub.1007616111
59 rdf:type schema:PropertyValue
60 N3745a29719ad4944ab1efe334c146c9e schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N531d7e22ee4241d4a7ad715580380e7b rdf:first sg:person.015414343265.52
63 rdf:rest N20dd38ee452d41c39e204ba32ce48e5d
64 N5ddea76ffffe4e52872928c3cb382f43 schema:name readcube_id
65 schema:value 24470ffc95f878975ce1e68e6feb21cb741ed4878297effca16ee3cb0429b017
66 rdf:type schema:PropertyValue
67 N7683bbf9aeec460fb23cdeb6f12aeee2 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N781fb715803e42efa7d72a24aef974e2 schema:name doi
70 schema:value 10.1186/s13634-016-0331-5
71 rdf:type schema:PropertyValue
72 Nb5f5191305e543ab9e80c726f853851c rdf:first sg:person.013316510015.38
73 rdf:rest rdf:nil
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:grant.3792295 http://pending.schema.org/fundedItem sg:pub.10.1186/s13634-016-0331-5
81 rdf:type schema:MonetaryGrant
82 sg:journal.1357355 schema:issn 1687-0433
83 1687-6172
84 schema:name Applied Signal Processing
85 rdf:type schema:Periodical
86 sg:person.010645765323.85 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
87 schema:familyName Muma
88 schema:givenName Michael
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645765323.85
90 rdf:type schema:Person
91 sg:person.013316510015.38 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
92 schema:familyName Zoubir
93 schema:givenName Abdelhak M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38
95 rdf:type schema:Person
96 sg:person.015414343265.52 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
97 schema:familyName Binder
98 schema:givenName Patricia
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015414343265.52
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-540-70602-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001673790
102 https://doi.org/10.1007/978-3-540-70602-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-662-44468-9_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014172713
105 https://doi.org/10.1007/978-3-662-44468-9_58
106 rdf:type schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1109503092 schema:CreativeWork
108 https://doi.org/10.1002/0470010940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109503092
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.comnet.2008.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031350082
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.sigpro.2012.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038577337
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/afrcon.2015.7331863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094101850
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/icassp.2015.7179080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093289952
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/icassp.2015.7179085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093868126
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/icicee.2012.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093530878
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/jproc.2014.2306253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297888
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/jstsp.2011.2114324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338060
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/milcom.2003.1290169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093898062
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/msp.2012.2183773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423776
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tsp.2003.814623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798956
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tsp.2009.2033729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061801902
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tsp.2010.2086450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802427
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tsp.2012.2196696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803300
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tsp.2013.2296271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804164
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tsp.2014.2333560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804446
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tsp.2014.2350965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804533
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tsp.2015.2412918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804806
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tsp.2015.2415755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804824
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/120876873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869440
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1214/aoms/1177703732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400228
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1561/2200000051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001421
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
155 schema:name Signal Processing Group, Technische Universität Darmstadt, 64283, Darmstadt, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...