Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-09

AUTHORS

Ingrid M. Weiss, Christina Muth, Robert Drumm, Helmut O. K. Kirchner

ABSTRACT

BackgroundThe pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products.ResultsCalorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA→a NH3+b H2O+c CO2+d H2S+e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.ConclusionsEight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C. More... »

PAGES

2

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13628-018-0042-4

DOI

http://dx.doi.org/10.1186/s13628-018-0042-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100918142

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29449937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany", 
            "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Ingrid M.", 
        "id": "sg:person.01352002561.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352002561.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muth", 
        "givenName": "Christina", 
        "id": "sg:person.0761062037.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761062037.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drumm", 
        "givenName": "Robert", 
        "id": "sg:person.016307007643.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307007643.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425202.3", 
          "name": [
            "INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirchner", 
        "givenName": "Helmut O. K.", 
        "id": "sg:person.07365635372.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365635372.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01516801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019613513", 
          "https://doi.org/10.1007/bf01516801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-51825-6_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041048592", 
          "https://doi.org/10.1007/978-3-642-51825-6_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-51825-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005024546", 
          "https://doi.org/10.1007/978-3-642-51825-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-4832-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012229805", 
          "https://doi.org/10.1007/978-94-009-4832-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-011-9980-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020036762", 
          "https://doi.org/10.1007/s00248-011-9980-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-009-0602-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034276689", 
          "https://doi.org/10.1007/s00114-009-0602-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-09", 
    "datePublishedReg": "2018-02-09", 
    "description": "BackgroundThe pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products.ResultsCalorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 \u00b0C and 280 \u00b0C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA\u2192a NH3+b H2O+c CO2+d H2S+e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.ConclusionsEight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 \u00b0C and 300 \u00b0C.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13628-018-0042-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040073", 
        "issn": [
          "2046-1682"
        ], 
        "name": "BMC Biophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "peptide bond", 
      "thermal decomposition", 
      "mass spectrometric data", 
      "products of decomposition", 
      "exception of cysteine", 
      "novel quantitative results", 
      "volatile products", 
      "decomposition products", 
      "mass spectrometry", 
      "spectrometric data", 
      "amino acids glycine", 
      "impact of water", 
      "standard amino acids", 
      "amino acids", 
      "acid G", 
      "kJ/", 
      "bonds", 
      "acids glycine", 
      "endothermic heat", 
      "amino acids G", 
      "cysteine", 
      "acid", 
      "decomposition", 
      "aspartic acid", 
      "CO2", 
      "glutamic acid", 
      "products", 
      "quantitative identification", 
      "thermogravimetry", 
      "spectrometry", 
      "NH3", 
      "thermal instability", 
      "H2O", 
      "residues", 
      "reaction", 
      "histidine", 
      "stability", 
      "sublimation", 
      "water", 
      "characteristic temperature", 
      "quantitative results", 
      "glycine", 
      "temperature", 
      "asparagine", 
      "range", 
      "arginine", 
      "process", 
      "melting", 
      "coefficient", 
      "state", 
      "heat", 
      "pathway", 
      "identification", 
      "contrast", 
      "glutamine", 
      "origin", 
      "condensate", 
      "results", 
      "exception", 
      "instability", 
      "hypothesis", 
      "data", 
      "impact", 
      "knowledge", 
      "constraints", 
      "polynomials", 
      "integer coefficients"
    ], 
    "name": "Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100918142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13628-018-0042-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29449937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13628-018-0042-4", 
      "https://app.dimensions.ai/details/publication/pub.1100918142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_768.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13628-018-0042-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13628-018-0042-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13628-018-0042-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13628-018-0042-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13628-018-0042-4'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      98 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13628-018-0042-4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6b430b23f2e541e295e7e2826c20c3b8
4 schema:citation sg:pub.10.1007/978-3-642-51825-6
5 sg:pub.10.1007/978-3-642-51825-6_31
6 sg:pub.10.1007/978-94-009-4832-7
7 sg:pub.10.1007/bf01516801
8 sg:pub.10.1007/s00114-009-0602-1
9 sg:pub.10.1007/s00248-011-9980-y
10 schema:datePublished 2018-02-09
11 schema:datePublishedReg 2018-02-09
12 schema:description BackgroundThe pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products.ResultsCalorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA→a NH3+b H2O+c CO2+d H2S+e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.ConclusionsEight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N8617fd25c9d24f5ab5052e9d1acc4544
16 Ne54d0c7858a44d49838d0423f7ee5ae3
17 sg:journal.1040073
18 schema:keywords CO2
19 H2O
20 NH3
21 acid
22 acid G
23 acids glycine
24 amino acids
25 amino acids G
26 amino acids glycine
27 arginine
28 asparagine
29 aspartic acid
30 bonds
31 characteristic temperature
32 coefficient
33 condensate
34 constraints
35 contrast
36 cysteine
37 data
38 decomposition
39 decomposition products
40 endothermic heat
41 exception
42 exception of cysteine
43 glutamic acid
44 glutamine
45 glycine
46 heat
47 histidine
48 hypothesis
49 identification
50 impact
51 impact of water
52 instability
53 integer coefficients
54 kJ/
55 knowledge
56 mass spectrometric data
57 mass spectrometry
58 melting
59 novel quantitative results
60 origin
61 pathway
62 peptide bond
63 polynomials
64 process
65 products
66 products of decomposition
67 quantitative identification
68 quantitative results
69 range
70 reaction
71 residues
72 results
73 spectrometric data
74 spectrometry
75 stability
76 standard amino acids
77 state
78 sublimation
79 temperature
80 thermal decomposition
81 thermal instability
82 thermogravimetry
83 volatile products
84 water
85 schema:name Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine
86 schema:pagination 2
87 schema:productId N28f9cba4b83a487db22bb4d621590f7a
88 N468e244f9b524ceb8767e5d88b97795e
89 N4d1e984ae86b488ea9f5478927ff29c0
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100918142
91 https://doi.org/10.1186/s13628-018-0042-4
92 schema:sdDatePublished 2022-08-04T17:06
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Ned9ddc30d8034ca99803ba2b593b80b2
95 schema:url https://doi.org/10.1186/s13628-018-0042-4
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N28f9cba4b83a487db22bb4d621590f7a schema:name pubmed_id
100 schema:value 29449937
101 rdf:type schema:PropertyValue
102 N468e244f9b524ceb8767e5d88b97795e schema:name dimensions_id
103 schema:value pub.1100918142
104 rdf:type schema:PropertyValue
105 N46f26433f3944688afc3586faa9c8c24 rdf:first sg:person.07365635372.11
106 rdf:rest rdf:nil
107 N4d1e984ae86b488ea9f5478927ff29c0 schema:name doi
108 schema:value 10.1186/s13628-018-0042-4
109 rdf:type schema:PropertyValue
110 N6b430b23f2e541e295e7e2826c20c3b8 rdf:first sg:person.01352002561.33
111 rdf:rest Naac4a5d8b1e94ef2a5eb9fa310a3ae7a
112 N8617fd25c9d24f5ab5052e9d1acc4544 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Na2275fff3cd44c3aa540c89442f6aafc rdf:first sg:person.016307007643.49
115 rdf:rest N46f26433f3944688afc3586faa9c8c24
116 Naac4a5d8b1e94ef2a5eb9fa310a3ae7a rdf:first sg:person.0761062037.90
117 rdf:rest Na2275fff3cd44c3aa540c89442f6aafc
118 Ne54d0c7858a44d49838d0423f7ee5ae3 schema:volumeNumber 11
119 rdf:type schema:PublicationVolume
120 Ned9ddc30d8034ca99803ba2b593b80b2 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biochemistry and Cell Biology
127 rdf:type schema:DefinedTerm
128 sg:journal.1040073 schema:issn 2046-1682
129 schema:name BMC Biophysics
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01352002561.33 schema:affiliation grid-institutes:grid.425202.3
133 schema:familyName Weiss
134 schema:givenName Ingrid M.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352002561.33
136 rdf:type schema:Person
137 sg:person.016307007643.49 schema:affiliation grid-institutes:grid.425202.3
138 schema:familyName Drumm
139 schema:givenName Robert
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307007643.49
141 rdf:type schema:Person
142 sg:person.07365635372.11 schema:affiliation grid-institutes:grid.425202.3
143 schema:familyName Kirchner
144 schema:givenName Helmut O. K.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365635372.11
146 rdf:type schema:Person
147 sg:person.0761062037.90 schema:affiliation grid-institutes:grid.425202.3
148 schema:familyName Muth
149 schema:givenName Christina
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761062037.90
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-642-51825-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005024546
153 https://doi.org/10.1007/978-3-642-51825-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-51825-6_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041048592
156 https://doi.org/10.1007/978-3-642-51825-6_31
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-94-009-4832-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012229805
159 https://doi.org/10.1007/978-94-009-4832-7
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf01516801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019613513
162 https://doi.org/10.1007/bf01516801
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00114-009-0602-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034276689
165 https://doi.org/10.1007/s00114-009-0602-1
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s00248-011-9980-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020036762
168 https://doi.org/10.1007/s00248-011-9980-y
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.425202.3 schema:alternateName INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany
171 schema:name INM-Leibniz Institute for New Materials, Campus D2 2, D-66123, Saarbruecken, Germany
172 Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...