Early sepsis markers in patients admitted to intensive care unit with moderate-to-severe diabetic ketoacidosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-05-19

AUTHORS

Florian Blanchard, Judith Charbit, Guillaume Van der Meersch, Benjamin Popoff, Adrien Picod, Regis Cohen, Frank Chemouni, Stephane Gaudry, Helene Bihan, Yves Cohen

ABSTRACT

BackgroundBacterial infections are frequent triggers for diabetic ketoacidosis. In this context, delayed antibiotic treatment is associated with increased morbidity and mortality. Unnecessary administration of antimicrobial therapy might however, also negatively impact the prognosis. The usefulness of sepsis markers in diabetic ketoacidosis has not been assessed. Thus, we sought to investigate diagnostic performances of clinical and biological sepsis markers during diabetic ketoacidosis.MethodsIn this monocentric retrospective cohort study, all consecutive episodes of diabetic ketoacidosis (defined as pH ≤ 7.25, glycaemia > 300 mg/dL and presence of ketones) admitted in intensive care unit were included. A proven bacterial infection was defined as bacteriological documentation on any bacterial sample. Clinical (presence of fever: temperature > 38 °C and presence of hypothermia: temperature < 36 °C) and biological markers (whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and procalcitonin), recorded at admission, were compared according to the presence or absence of a proven bacterial infection.ResultsBetween 2011 and 2018, among 134 episodes of diabetic ketoacidosis, 102 were included (91 patients). Twenty out of 102 were infected. At admission, procalcitonin (median: 3.58 ng/mL vs 0.52 ng/mL, p < 0.001) and presence of fever (25% vs 4%, p = 0.007) were different between episodes with and without proven bacterial infection in both univariate and multivariate analysis. Whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and presence of hypothermia were not different between both groups. The diagnostic performance analysis for procalcitonin revealed an area under the curve of 0.87 with an optimal cutoff of 1.44 ng/mL leading to a sensitivity of 0.90 and a specificity of 0.76. Combining procalcitonin and presence of fever allowed to distinguish proven bacterial infection episodes from those without proven bacterial infection. Indeed, all patients with procalcitonin level of more than 1.44 ng/mL and fever had proven bacterial infection episodes. The presence of one of these 2 markers was associated with 46% of proven bacterial infection episodes. No afebrile patient with procalcitonin level less than 1.44 ng/mL had a proven bacterial infection.ConclusionAt admission, combining procalcitonin and presence of fever may be of value to distinguish ketoacidosis patients with and without proven bacterial infection, admitted in intensive care unit. More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13613-020-00676-6

DOI

http://dx.doi.org/10.1186/s13613-020-00676-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1127738048

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32430795


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanchard", 
        "givenName": "Florian", 
        "id": "sg:person.07571417627.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571417627.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, CRNH-IdF, 125 rue Stalingrad, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, CRNH-IdF, 125 rue Stalingrad, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charbit", 
        "givenName": "Judith", 
        "id": "sg:person.015650114645.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650114645.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van der Meersch", 
        "givenName": "Guillaume", 
        "id": "sg:person.010004753465.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004753465.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popoff", 
        "givenName": "Benjamin", 
        "id": "sg:person.012401412515.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401412515.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Picod", 
        "givenName": "Adrien", 
        "id": "sg:person.013325541137.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325541137.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology, Delafontaine Hospital, 2 rue du Dr Delafontaine, Saint-Denis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Endocrinology, Delafontaine Hospital, 2 rue du Dr Delafontaine, Saint-Denis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cohen", 
        "givenName": "Regis", 
        "id": "sg:person.014042644632.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042644632.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gustave Roussy, M\u00e9decine Intensive R\u00e9animation, 94805, Villejuif, France", 
          "id": "http://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Gustave Roussy, M\u00e9decine Intensive R\u00e9animation, 94805, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chemouni", 
        "givenName": "Frank", 
        "id": "sg:person.0650163276.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650163276.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University, INSERM, Remodeling and Repair of Renal Tissue, UMR S1155, Tenon Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France", 
            "Sorbonne University, INSERM, Remodeling and Repair of Renal Tissue, UMR S1155, Tenon Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaudry", 
        "givenName": "Stephane", 
        "id": "sg:person.01041110550.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041110550.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, CRNH-IdF, 125 rue Stalingrad, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, CRNH-IdF, 125 rue Stalingrad, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bihan", 
        "givenName": "Helene", 
        "id": "sg:person.01332701137.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332701137.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France", 
          "id": "http://www.grid.ac/institutes/grid.413780.9", 
          "name": [
            "Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cit\u00e9, 125 rue Stalingrad, 93000, Bobigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cohen", 
        "givenName": "Yves", 
        "id": "sg:person.0753735104.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753735104.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12916-017-0795-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074205340", 
          "https://doi.org/10.1186/s12916-017-0795-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250100592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010161261", 
          "https://doi.org/10.1007/s001250100592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s15010-016-0972-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041902247", 
          "https://doi.org/10.1007/s15010-016-0972-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00024677-200302020-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012333697", 
          "https://doi.org/10.2165/00024677-200302020-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc5926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015326111", 
          "https://doi.org/10.1186/cc5926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2216-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044949479", 
          "https://doi.org/10.1007/s00125-011-2216-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-05-19", 
    "datePublishedReg": "2020-05-19", 
    "description": "BackgroundBacterial infections are frequent triggers for diabetic ketoacidosis. In this context, delayed antibiotic treatment is associated with increased morbidity and mortality. Unnecessary administration of antimicrobial therapy might however, also negatively impact the prognosis. The usefulness of sepsis markers in diabetic ketoacidosis has not been assessed. Thus, we sought to investigate diagnostic performances of clinical and biological sepsis markers during diabetic ketoacidosis.MethodsIn this monocentric retrospective cohort study, all consecutive episodes of diabetic ketoacidosis (defined as pH \u2264 7.25, glycaemia > 300\u00a0mg/dL and presence of ketones) admitted in intensive care unit were included. A proven bacterial infection was defined as bacteriological documentation on any bacterial sample. Clinical (presence of fever: temperature > 38\u00a0\u00b0C and presence of hypothermia: temperature < 36\u00a0\u00b0C) and biological markers (whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and procalcitonin), recorded at admission, were compared according to the presence or absence of a proven bacterial infection.ResultsBetween 2011 and 2018, among 134 episodes of diabetic ketoacidosis, 102 were included (91 patients). Twenty out of 102 were infected. At admission, procalcitonin (median: 3.58\u00a0ng/mL vs 0.52\u00a0ng/mL, p\u2009<\u20090.001) and presence of fever (25% vs 4%, p\u2009=\u20090.007) were different between episodes with and without proven bacterial infection in both univariate and multivariate analysis. Whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and presence of hypothermia were not different between both groups. The diagnostic performance analysis for procalcitonin revealed an area under the curve of 0.87 with an optimal cutoff of 1.44\u00a0ng/mL leading to a sensitivity of 0.90 and a specificity of 0.76. Combining procalcitonin and presence of fever allowed to distinguish proven bacterial infection episodes from those without proven bacterial infection. Indeed, all patients with procalcitonin level of more than 1.44\u00a0ng/mL and fever had proven bacterial infection episodes. The presence of one of these 2 markers was associated with 46% of proven bacterial infection episodes. No afebrile patient with procalcitonin level less than 1.44\u00a0ng/mL had a proven bacterial infection.ConclusionAt admission, combining procalcitonin and presence of fever may be of value to distinguish ketoacidosis patients with and without proven bacterial infection, admitted in intensive care unit.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13613-020-00676-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045300", 
        "issn": [
          "2110-5820"
        ], 
        "name": "Annals of Intensive Care", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "bacterial infection episodes", 
      "presence of fever", 
      "intensive care unit", 
      "diabetic ketoacidosis", 
      "infection episodes", 
      "care unit", 
      "sepsis markers", 
      "bacterial infections", 
      "procalcitonin levels", 
      "monocentric retrospective cohort study", 
      "early sepsis marker", 
      "retrospective cohort study", 
      "severe diabetic ketoacidosis", 
      "presence of hypothermia", 
      "whole blood count", 
      "diagnostic performance analysis", 
      "bacteriological documentation", 
      "cohort study", 
      "neutrophil count", 
      "blood count", 
      "ketoacidosis patients", 
      "unnecessary administration", 
      "antibiotic treatment", 
      "antimicrobial therapy", 
      "consecutive episodes", 
      "ketoacidosis", 
      "frequent trigger", 
      "ResultsBetween 2011", 
      "optimal cutoff", 
      "procalcitonin", 
      "fever", 
      "infection", 
      "biological markers", 
      "patients", 
      "admission", 
      "diagnostic performance", 
      "episodes", 
      "BackgroundBacterial infections", 
      "markers", 
      "count", 
      "bacterial samples", 
      "morbidity", 
      "prognosis", 
      "mL", 
      "hypothermia", 
      "lymphocytes", 
      "therapy", 
      "Clinical", 
      "neutrophils", 
      "mortality", 
      "MethodsIn", 
      "administration", 
      "treatment", 
      "levels", 
      "presence", 
      "group", 
      "cutoff", 
      "specificity", 
      "triggers", 
      "units", 
      "absence", 
      "study", 
      "sensitivity", 
      "usefulness", 
      "analysis", 
      "documentation", 
      "samples", 
      "ratio", 
      "curves", 
      "area", 
      "values", 
      "context", 
      "performance", 
      "performance analysis"
    ], 
    "name": "Early sepsis markers in patients admitted to intensive care unit with moderate-to-severe diabetic ketoacidosis", 
    "pagination": "58", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1127738048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13613-020-00676-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32430795"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13613-020-00676-6", 
      "https://app.dimensions.ai/details/publication/pub.1127738048"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_850.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13613-020-00676-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13613-020-00676-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13613-020-00676-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13613-020-00676-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13613-020-00676-6'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      105 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13613-020-00676-6 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N3fe072140d0644048716b650a1d66899
4 schema:citation sg:pub.10.1007/s00125-011-2216-3
5 sg:pub.10.1007/s001250100592
6 sg:pub.10.1007/s15010-016-0972-1
7 sg:pub.10.1186/cc5926
8 sg:pub.10.1186/s12916-017-0795-7
9 sg:pub.10.2165/00024677-200302020-00003
10 schema:datePublished 2020-05-19
11 schema:datePublishedReg 2020-05-19
12 schema:description BackgroundBacterial infections are frequent triggers for diabetic ketoacidosis. In this context, delayed antibiotic treatment is associated with increased morbidity and mortality. Unnecessary administration of antimicrobial therapy might however, also negatively impact the prognosis. The usefulness of sepsis markers in diabetic ketoacidosis has not been assessed. Thus, we sought to investigate diagnostic performances of clinical and biological sepsis markers during diabetic ketoacidosis.MethodsIn this monocentric retrospective cohort study, all consecutive episodes of diabetic ketoacidosis (defined as pH ≤ 7.25, glycaemia > 300 mg/dL and presence of ketones) admitted in intensive care unit were included. A proven bacterial infection was defined as bacteriological documentation on any bacterial sample. Clinical (presence of fever: temperature > 38 °C and presence of hypothermia: temperature < 36 °C) and biological markers (whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and procalcitonin), recorded at admission, were compared according to the presence or absence of a proven bacterial infection.ResultsBetween 2011 and 2018, among 134 episodes of diabetic ketoacidosis, 102 were included (91 patients). Twenty out of 102 were infected. At admission, procalcitonin (median: 3.58 ng/mL vs 0.52 ng/mL, p < 0.001) and presence of fever (25% vs 4%, p = 0.007) were different between episodes with and without proven bacterial infection in both univariate and multivariate analysis. Whole blood count, neutrophils count, neutrophils-to-lymphocytes count ratio and presence of hypothermia were not different between both groups. The diagnostic performance analysis for procalcitonin revealed an area under the curve of 0.87 with an optimal cutoff of 1.44 ng/mL leading to a sensitivity of 0.90 and a specificity of 0.76. Combining procalcitonin and presence of fever allowed to distinguish proven bacterial infection episodes from those without proven bacterial infection. Indeed, all patients with procalcitonin level of more than 1.44 ng/mL and fever had proven bacterial infection episodes. The presence of one of these 2 markers was associated with 46% of proven bacterial infection episodes. No afebrile patient with procalcitonin level less than 1.44 ng/mL had a proven bacterial infection.ConclusionAt admission, combining procalcitonin and presence of fever may be of value to distinguish ketoacidosis patients with and without proven bacterial infection, admitted in intensive care unit.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf Nd20ac95a53c0432196f5ba4b0158ff16
16 Nd876948c8f024df19fd115fe8f2c64cb
17 sg:journal.1045300
18 schema:keywords BackgroundBacterial infections
19 Clinical
20 MethodsIn
21 ResultsBetween 2011
22 absence
23 administration
24 admission
25 analysis
26 antibiotic treatment
27 antimicrobial therapy
28 area
29 bacterial infection episodes
30 bacterial infections
31 bacterial samples
32 bacteriological documentation
33 biological markers
34 blood count
35 care unit
36 cohort study
37 consecutive episodes
38 context
39 count
40 curves
41 cutoff
42 diabetic ketoacidosis
43 diagnostic performance
44 diagnostic performance analysis
45 documentation
46 early sepsis marker
47 episodes
48 fever
49 frequent trigger
50 group
51 hypothermia
52 infection
53 infection episodes
54 intensive care unit
55 ketoacidosis
56 ketoacidosis patients
57 levels
58 lymphocytes
59 mL
60 markers
61 monocentric retrospective cohort study
62 morbidity
63 mortality
64 neutrophil count
65 neutrophils
66 optimal cutoff
67 patients
68 performance
69 performance analysis
70 presence
71 presence of fever
72 presence of hypothermia
73 procalcitonin
74 procalcitonin levels
75 prognosis
76 ratio
77 retrospective cohort study
78 samples
79 sensitivity
80 sepsis markers
81 severe diabetic ketoacidosis
82 specificity
83 study
84 therapy
85 treatment
86 triggers
87 units
88 unnecessary administration
89 usefulness
90 values
91 whole blood count
92 schema:name Early sepsis markers in patients admitted to intensive care unit with moderate-to-severe diabetic ketoacidosis
93 schema:pagination 58
94 schema:productId N77529ae3d8b748428049b0da499a899b
95 Nc29d11825e484007976c98f900c54e69
96 Nfccb48b376354ed79e7c817a982f604e
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127738048
98 https://doi.org/10.1186/s13613-020-00676-6
99 schema:sdDatePublished 2022-09-02T16:05
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N8854f47c57474914b021d9eb97682267
102 schema:url https://doi.org/10.1186/s13613-020-00676-6
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0856f5130f1b47dc848717c0a7ff5ff3 rdf:first sg:person.0753735104.09
107 rdf:rest rdf:nil
108 N0cb27bc43a324906927fef0d27d8af0f rdf:first sg:person.014042644632.09
109 rdf:rest Nf3109690763b4c4ba2e2c7f4ae69acce
110 N3cc3327f5d2f458392aa8445587e77a2 rdf:first sg:person.015650114645.71
111 rdf:rest N7b42f06c4ace4a039b70e478ce6b3a5b
112 N3fe072140d0644048716b650a1d66899 rdf:first sg:person.07571417627.27
113 rdf:rest N3cc3327f5d2f458392aa8445587e77a2
114 N77529ae3d8b748428049b0da499a899b schema:name pubmed_id
115 schema:value 32430795
116 rdf:type schema:PropertyValue
117 N7b42f06c4ace4a039b70e478ce6b3a5b rdf:first sg:person.010004753465.92
118 rdf:rest Nd3a2fccc119a4873bc07db49053b3e75
119 N8854f47c57474914b021d9eb97682267 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N8d2e40b7d0a64df8b69d789ca49d403f rdf:first sg:person.013325541137.23
122 rdf:rest N0cb27bc43a324906927fef0d27d8af0f
123 Nc05037c0abc44c2893bd5703c800df9b rdf:first sg:person.01332701137.91
124 rdf:rest N0856f5130f1b47dc848717c0a7ff5ff3
125 Nc29d11825e484007976c98f900c54e69 schema:name doi
126 schema:value 10.1186/s13613-020-00676-6
127 rdf:type schema:PropertyValue
128 Nd20ac95a53c0432196f5ba4b0158ff16 schema:volumeNumber 10
129 rdf:type schema:PublicationVolume
130 Nd3a2fccc119a4873bc07db49053b3e75 rdf:first sg:person.012401412515.23
131 rdf:rest N8d2e40b7d0a64df8b69d789ca49d403f
132 Nd876948c8f024df19fd115fe8f2c64cb schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 Nda206c664a9d44c3832b8a487696c4e5 rdf:first sg:person.01041110550.95
135 rdf:rest Nc05037c0abc44c2893bd5703c800df9b
136 Nf3109690763b4c4ba2e2c7f4ae69acce rdf:first sg:person.0650163276.38
137 rdf:rest Nda206c664a9d44c3832b8a487696c4e5
138 Nfccb48b376354ed79e7c817a982f604e schema:name dimensions_id
139 schema:value pub.1127738048
140 rdf:type schema:PropertyValue
141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
142 schema:name Medical and Health Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
145 schema:name Clinical Sciences
146 rdf:type schema:DefinedTerm
147 sg:journal.1045300 schema:issn 2110-5820
148 schema:name Annals of Intensive Care
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.010004753465.92 schema:affiliation grid-institutes:grid.413780.9
152 schema:familyName Van der Meersch
153 schema:givenName Guillaume
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004753465.92
155 rdf:type schema:Person
156 sg:person.01041110550.95 schema:affiliation grid-institutes:None
157 schema:familyName Gaudry
158 schema:givenName Stephane
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041110550.95
160 rdf:type schema:Person
161 sg:person.012401412515.23 schema:affiliation grid-institutes:grid.41724.34
162 schema:familyName Popoff
163 schema:givenName Benjamin
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401412515.23
165 rdf:type schema:Person
166 sg:person.013325541137.23 schema:affiliation grid-institutes:grid.413780.9
167 schema:familyName Picod
168 schema:givenName Adrien
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325541137.23
170 rdf:type schema:Person
171 sg:person.01332701137.91 schema:affiliation grid-institutes:grid.413780.9
172 schema:familyName Bihan
173 schema:givenName Helene
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332701137.91
175 rdf:type schema:Person
176 sg:person.014042644632.09 schema:affiliation grid-institutes:None
177 schema:familyName Cohen
178 schema:givenName Regis
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042644632.09
180 rdf:type schema:Person
181 sg:person.015650114645.71 schema:affiliation grid-institutes:grid.413780.9
182 schema:familyName Charbit
183 schema:givenName Judith
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650114645.71
185 rdf:type schema:Person
186 sg:person.0650163276.38 schema:affiliation grid-institutes:grid.14925.3b
187 schema:familyName Chemouni
188 schema:givenName Frank
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650163276.38
190 rdf:type schema:Person
191 sg:person.0753735104.09 schema:affiliation grid-institutes:grid.413780.9
192 schema:familyName Cohen
193 schema:givenName Yves
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753735104.09
195 rdf:type schema:Person
196 sg:person.07571417627.27 schema:affiliation grid-institutes:grid.413780.9
197 schema:familyName Blanchard
198 schema:givenName Florian
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571417627.27
200 rdf:type schema:Person
201 sg:pub.10.1007/s00125-011-2216-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044949479
202 https://doi.org/10.1007/s00125-011-2216-3
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s001250100592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010161261
205 https://doi.org/10.1007/s001250100592
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s15010-016-0972-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041902247
208 https://doi.org/10.1007/s15010-016-0972-1
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/cc5926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015326111
211 https://doi.org/10.1186/cc5926
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/s12916-017-0795-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074205340
214 https://doi.org/10.1186/s12916-017-0795-7
215 rdf:type schema:CreativeWork
216 sg:pub.10.2165/00024677-200302020-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012333697
217 https://doi.org/10.2165/00024677-200302020-00003
218 rdf:type schema:CreativeWork
219 grid-institutes:None schema:alternateName Department of Endocrinology, Delafontaine Hospital, 2 rue du Dr Delafontaine, Saint-Denis, France
220 Sorbonne University, INSERM, Remodeling and Repair of Renal Tissue, UMR S1155, Tenon Hospital, Paris, France
221 schema:name Department of Endocrinology, Delafontaine Hospital, 2 rue du Dr Delafontaine, Saint-Denis, France
222 Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cité, 125 rue Stalingrad, 93000, Bobigny, France
223 Sorbonne University, INSERM, Remodeling and Repair of Renal Tissue, UMR S1155, Tenon Hospital, Paris, France
224 rdf:type schema:Organization
225 grid-institutes:grid.14925.3b schema:alternateName Gustave Roussy, Médecine Intensive Réanimation, 94805, Villejuif, France
226 schema:name Gustave Roussy, Médecine Intensive Réanimation, 94805, Villejuif, France
227 rdf:type schema:Organization
228 grid-institutes:grid.413780.9 schema:alternateName Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, 125 rue Stalingrad, Bobigny, France
229 Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cité, 125 rue Stalingrad, 93000, Bobigny, France
230 schema:name Department of Endocrinology, Diabetology, Metabolic Disease, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, 125 rue Stalingrad, Bobigny, France
231 Medical-Surgical Intensive Care Unit, Avicenne University Hospital, AP-HP, Paris 13 University, Sorbonne Paris Cité, 125 rue Stalingrad, 93000, Bobigny, France
232 rdf:type schema:Organization
233 grid-institutes:grid.41724.34 schema:alternateName Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
234 schema:name Department of Anesthesiology and Critical Care, Rouen University Hospital, Rouen, France
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...