Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Xueqin Cheng, Jing Yang, Meifang Wang, Peng Wu, Qiong Du, Jinjuan He, Yijun Tang

ABSTRACT

The traditional microbiological methods used for detecting Acinetobacter baumannii were usually time-consuming and labor-intensive. Thus, we sought to establish a novel rapid detecting method for target pathogen. A set of multiple cross displacement amplification (MCDA) primers was designed to recognize 10 different regions of the pgaD gene, which was conservative and specific for the bacterium. In the MCDA system, amplification primers D1 and R1 were 5'-labeled with FITC (fluorescein) and biotin, respectively. Numerous FITC- and biotin-attached duplex amplicons were formed during the amplification stage, which were detected by nanoparticles-based lateral flow biosensors (LFB) through immunoreactions (FITC on the duplex and anti-FITC on the LFB test line) and biotin/streptavidin interaction (biotin on the duplex and streptavidin on the nanoparticles). The results showed that the optimized reaction condition of MCDA-LFB method was 62 °C within 25 min. There was no cross reaction with non-A. baumannii species and the non-Acinetobacter genera, and the detection limit for DNA samples was 100 fg/reaction. For 135 sputum samples, the detection results showed that the detection ability of MCDA-LFB assay was superior to the culture methods and conventional PCR. Therefore, MCDA-LFB assay could be a potential tool for the rapid detection of A. baumannii in clinical samples and low resource areas. More... »

PAGES

30

Journal

TITLE

AMB Express

ISSUE

1

VOLUME

9

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13568-019-0754-0

    DOI

    http://dx.doi.org/10.1186/s13568-019-0754-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112396948

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30806854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Xueqin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pharmacy, Wuhan General Hospital of the Chinese People\u2019s Liberation Army, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Jing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Meifang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Peng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Qiong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Jinjuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Yijun", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1097/pdm.0b013e31821bbb1e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002687784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/pdm.0b013e31821bbb1e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002687784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-0691.2007.01819.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003949688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jcm.02467-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005276553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jam.12061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009710868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011612018", 
              "https://doi.org/10.1038/nrmicro1789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0066406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012090910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amjoto.2009.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012627270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-0691.2004.00942.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021272363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/2049-632x.12125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023564675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/fmb.11.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025660201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmii.2010.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029198854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mimet.2012.11.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032688760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00647-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038365386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2016.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042789641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043827578", 
              "https://doi.org/10.1038/srep11902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jcm.06566-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045407375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijid.2014.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050613487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078552326", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079081884", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/cmr.9.2.148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083016134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mimet.2018.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103794896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2018.00907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103887860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/femsle/fny147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104695256"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The traditional microbiological methods used for detecting Acinetobacter baumannii were usually time-consuming and labor-intensive. Thus, we sought to establish a novel rapid detecting method for target pathogen. A set of multiple cross displacement amplification (MCDA) primers was designed to recognize 10 different regions of the pgaD gene, which was conservative and specific for the bacterium. In the MCDA system, amplification primers D1 and R1 were 5'-labeled with FITC (fluorescein) and biotin, respectively. Numerous FITC- and biotin-attached duplex amplicons were formed during the amplification stage, which were detected by nanoparticles-based lateral flow biosensors (LFB) through immunoreactions (FITC on the duplex and anti-FITC on the LFB test line) and biotin/streptavidin interaction (biotin on the duplex and streptavidin on the nanoparticles). The results showed that the optimized reaction condition of MCDA-LFB method was 62\u00a0\u00b0C within 25\u00a0min. There was no cross reaction with non-A. baumannii species and the non-Acinetobacter genera, and the detection limit for DNA samples was 100\u00a0fg/reaction. For 135 sputum samples, the detection results showed that the detection ability of MCDA-LFB assay was superior to the culture methods and conventional PCR. Therefore, MCDA-LFB assay could be a potential tool for the rapid detection of A. baumannii in clinical samples and low resource areas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13568-019-0754-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7201716", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045217", 
            "issn": [
              "2191-0855"
            ], 
            "name": "AMB Express", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay", 
        "pagination": "30", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "da3754c35ce7ce1957af7ec91abba66332312e3cbeced911ee434bb2e4729613"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30806854"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101561785"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13568-019-0754-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112396948"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13568-019-0754-0", 
          "https://app.dimensions.ai/details/publication/pub.1112396948"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13568-019-0754-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13568-019-0754-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13568-019-0754-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13568-019-0754-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13568-019-0754-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13568-019-0754-0 schema:about anzsrc-for:10
    2 anzsrc-for:1004
    3 schema:author N71715ca716b84facb60143a465413ba2
    4 schema:citation sg:pub.10.1038/nrmicro1789
    5 sg:pub.10.1038/srep11902
    6 https://app.dimensions.ai/details/publication/pub.1078552326
    7 https://app.dimensions.ai/details/publication/pub.1079081884
    8 https://doi.org/10.1016/j.amjoto.2009.02.018
    9 https://doi.org/10.1016/j.ijid.2014.01.018
    10 https://doi.org/10.1016/j.jmii.2010.04.003
    11 https://doi.org/10.1016/j.mimet.2012.11.020
    12 https://doi.org/10.1016/j.mimet.2018.05.003
    13 https://doi.org/10.1016/j.snb.2016.10.001
    14 https://doi.org/10.1093/femsle/fny147
    15 https://doi.org/10.1097/pdm.0b013e31821bbb1e
    16 https://doi.org/10.1111/2049-632x.12125
    17 https://doi.org/10.1111/j.1469-0691.2004.00942.x
    18 https://doi.org/10.1111/j.1469-0691.2007.01819.x
    19 https://doi.org/10.1111/jam.12061
    20 https://doi.org/10.1128/cmr.9.2.148
    21 https://doi.org/10.1128/jb.00647-09
    22 https://doi.org/10.1128/jcm.02467-09
    23 https://doi.org/10.1128/jcm.06566-11
    24 https://doi.org/10.1371/journal.pone.0066406
    25 https://doi.org/10.2217/fmb.11.23
    26 https://doi.org/10.3389/fmicb.2018.00907
    27 schema:datePublished 2019-12
    28 schema:datePublishedReg 2019-12-01
    29 schema:description The traditional microbiological methods used for detecting Acinetobacter baumannii were usually time-consuming and labor-intensive. Thus, we sought to establish a novel rapid detecting method for target pathogen. A set of multiple cross displacement amplification (MCDA) primers was designed to recognize 10 different regions of the pgaD gene, which was conservative and specific for the bacterium. In the MCDA system, amplification primers D1 and R1 were 5'-labeled with FITC (fluorescein) and biotin, respectively. Numerous FITC- and biotin-attached duplex amplicons were formed during the amplification stage, which were detected by nanoparticles-based lateral flow biosensors (LFB) through immunoreactions (FITC on the duplex and anti-FITC on the LFB test line) and biotin/streptavidin interaction (biotin on the duplex and streptavidin on the nanoparticles). The results showed that the optimized reaction condition of MCDA-LFB method was 62 °C within 25 min. There was no cross reaction with non-A. baumannii species and the non-Acinetobacter genera, and the detection limit for DNA samples was 100 fg/reaction. For 135 sputum samples, the detection results showed that the detection ability of MCDA-LFB assay was superior to the culture methods and conventional PCR. Therefore, MCDA-LFB assay could be a potential tool for the rapid detection of A. baumannii in clinical samples and low resource areas.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N0e7e0fe649ee4120b45621d52f7897b8
    34 N9664755138f74215acb2c1aac670b469
    35 sg:journal.1045217
    36 schema:name Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay
    37 schema:pagination 30
    38 schema:productId N37443a98e333422daab0cda6cd95cd13
    39 N504a662378eb445dacb7a9f554dd033b
    40 N60d68f7250e54a928c38d13db7ea859b
    41 Nd24f0001deee41fba8b0af6ee8a56946
    42 Nffb3400cedd54d6ab316a9d7f11c857f
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112396948
    44 https://doi.org/10.1186/s13568-019-0754-0
    45 schema:sdDatePublished 2019-04-11T13:19
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Na1f9d8b150b54923b9ba497bea854d33
    48 schema:url https://link.springer.com/10.1186%2Fs13568-019-0754-0
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0790ea51d7e548a982843a0692015805 schema:affiliation N700abeb09d7d4fbdad23f02c546722d7
    53 schema:familyName Cheng
    54 schema:givenName Xueqin
    55 rdf:type schema:Person
    56 N0e7e0fe649ee4120b45621d52f7897b8 schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 N1518f8973dd44634b40ed8a4e219ae62 schema:name Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China
    59 rdf:type schema:Organization
    60 N229fcff701054795bb43710ffd01fadf schema:affiliation N5f9f26fbe39a44f0b2d953fd55f42172
    61 schema:familyName Yang
    62 schema:givenName Jing
    63 rdf:type schema:Person
    64 N27f49800aac44a7cb90d71463429953d rdf:first N6bd01fe2cd6d4c6fbb52a039bd892620
    65 rdf:rest N750b112ff2cf4efa90aeb8d9c1ec9bf6
    66 N37443a98e333422daab0cda6cd95cd13 schema:name pubmed_id
    67 schema:value 30806854
    68 rdf:type schema:PropertyValue
    69 N3ff6d2e56cce4b8aa91e110144521d35 schema:name Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China
    70 rdf:type schema:Organization
    71 N468f6457efca4cfdbcb503847ff9eae1 schema:affiliation N1518f8973dd44634b40ed8a4e219ae62
    72 schema:familyName He
    73 schema:givenName Jinjuan
    74 rdf:type schema:Person
    75 N5047805a62814b429cb8bdca1d6faa7f schema:affiliation N5d6eb373818f4bc4b6fba0ef5b80c2a3
    76 schema:familyName Du
    77 schema:givenName Qiong
    78 rdf:type schema:Person
    79 N504a662378eb445dacb7a9f554dd033b schema:name doi
    80 schema:value 10.1186/s13568-019-0754-0
    81 rdf:type schema:PropertyValue
    82 N5d6eb373818f4bc4b6fba0ef5b80c2a3 schema:name Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China
    83 rdf:type schema:Organization
    84 N5f9f26fbe39a44f0b2d953fd55f42172 schema:name Department of Pharmacy, Wuhan General Hospital of the Chinese People’s Liberation Army, Hubei, China
    85 rdf:type schema:Organization
    86 N60d68f7250e54a928c38d13db7ea859b schema:name readcube_id
    87 schema:value da3754c35ce7ce1957af7ec91abba66332312e3cbeced911ee434bb2e4729613
    88 rdf:type schema:PropertyValue
    89 N6bd01fe2cd6d4c6fbb52a039bd892620 schema:affiliation Ncc26cdf485694b76a6873fe3b6a1bf86
    90 schema:familyName Wang
    91 schema:givenName Meifang
    92 rdf:type schema:Person
    93 N700abeb09d7d4fbdad23f02c546722d7 schema:name Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China
    94 rdf:type schema:Organization
    95 N71715ca716b84facb60143a465413ba2 rdf:first N0790ea51d7e548a982843a0692015805
    96 rdf:rest Nfc71ea04b2674c8c9265ed95eb07d015
    97 N750b112ff2cf4efa90aeb8d9c1ec9bf6 rdf:first N8ac6ad8b69614038a16fd1f491d0342b
    98 rdf:rest Nea0c55317a784f8eb5bfd26f4fcf0d48
    99 N7655e5948c6f4ad68d974b989531aef7 rdf:first N468f6457efca4cfdbcb503847ff9eae1
    100 rdf:rest N860fd93ede824a5ca94ebde3de4d6c72
    101 N85f802b162834f46b7417bfc79141ea2 schema:affiliation N3ff6d2e56cce4b8aa91e110144521d35
    102 schema:familyName Tang
    103 schema:givenName Yijun
    104 rdf:type schema:Person
    105 N860fd93ede824a5ca94ebde3de4d6c72 rdf:first N85f802b162834f46b7417bfc79141ea2
    106 rdf:rest rdf:nil
    107 N8ac6ad8b69614038a16fd1f491d0342b schema:affiliation Ncc7a66105da84ec7bc7c0e3528716d83
    108 schema:familyName Wu
    109 schema:givenName Peng
    110 rdf:type schema:Person
    111 N9664755138f74215acb2c1aac670b469 schema:volumeNumber 9
    112 rdf:type schema:PublicationVolume
    113 Na1f9d8b150b54923b9ba497bea854d33 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Ncc26cdf485694b76a6873fe3b6a1bf86 schema:name Department of Respiratory and Critical Medical, Taihe Hospital, Hubei University of Medicine, Hubei, China
    116 rdf:type schema:Organization
    117 Ncc7a66105da84ec7bc7c0e3528716d83 schema:name Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Hubei, China
    118 rdf:type schema:Organization
    119 Nd24f0001deee41fba8b0af6ee8a56946 schema:name dimensions_id
    120 schema:value pub.1112396948
    121 rdf:type schema:PropertyValue
    122 Nea0c55317a784f8eb5bfd26f4fcf0d48 rdf:first N5047805a62814b429cb8bdca1d6faa7f
    123 rdf:rest N7655e5948c6f4ad68d974b989531aef7
    124 Nfc71ea04b2674c8c9265ed95eb07d015 rdf:first N229fcff701054795bb43710ffd01fadf
    125 rdf:rest N27f49800aac44a7cb90d71463429953d
    126 Nffb3400cedd54d6ab316a9d7f11c857f schema:name nlm_unique_id
    127 schema:value 101561785
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Technology
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Medical Biotechnology
    134 rdf:type schema:DefinedTerm
    135 sg:grant.7201716 http://pending.schema.org/fundedItem sg:pub.10.1186/s13568-019-0754-0
    136 rdf:type schema:MonetaryGrant
    137 sg:journal.1045217 schema:issn 2191-0855
    138 schema:name AMB Express
    139 rdf:type schema:Periodical
    140 sg:pub.10.1038/nrmicro1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011612018
    141 https://doi.org/10.1038/nrmicro1789
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/srep11902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043827578
    144 https://doi.org/10.1038/srep11902
    145 rdf:type schema:CreativeWork
    146 https://app.dimensions.ai/details/publication/pub.1078552326 schema:CreativeWork
    147 https://app.dimensions.ai/details/publication/pub.1079081884 schema:CreativeWork
    148 https://doi.org/10.1016/j.amjoto.2009.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012627270
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.ijid.2014.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050613487
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.jmii.2010.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029198854
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.mimet.2012.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032688760
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.mimet.2018.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103794896
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.snb.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042789641
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1093/femsle/fny147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104695256
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1097/pdm.0b013e31821bbb1e schema:sameAs https://app.dimensions.ai/details/publication/pub.1002687784
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1111/2049-632x.12125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023564675
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1111/j.1469-0691.2004.00942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021272363
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1111/j.1469-0691.2007.01819.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003949688
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1111/jam.12061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009710868
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1128/cmr.9.2.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083016134
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1128/jb.00647-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038365386
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1128/jcm.02467-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005276553
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1128/jcm.06566-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407375
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1371/journal.pone.0066406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012090910
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.2217/fmb.11.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025660201
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.3389/fmicb.2018.00907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103887860
    185 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...