High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11-10

AUTHORS

Martin Kangwa, Vikas Yelemane, Ayse Nur Polat, Kanaka Durga Devi Gorrepati, Mariano Grasselli, Marcelo Fernández-Lahore

ABSTRACT

The major platform for high level recombinant protein production is based on genetically modified microorganisms like Escherichia coli (E. coli) due to its short dividing time, ability to use inexpensive substrates and additionally, its genetics is comparatively simple, well characterized and can be manipulated easily. Here, we investigated the possibilities of finding the best media for high cell density fermentation, by analyzing different media samples, focusing on improving fermentation techniques and recombinant protein production. Initial fermentation of E. coli BL21 DE3:pAV01 in baffled flasks showed that high cell density was achieved when using complex media, Luria-Bertani (LB) and Terrific medium broth (TB) (10 and 14 g/L wet weight, respectively), as compared to mineral media M9, modified minimal medium (MMM) and Riesenberg mineral medium (RM) (7, 8 and 7 g/L, respectively). However, in fed-batch fermentation processes when using MMM after 25 h cultivation, it was possible to yield an optical density (OD600) of 139 corresponding to 172 g/L of wet biomass was produced in a 30 L TV Techfors-S Infors HT fermenter, with a computer controlled nutrient supply (glucose as a carbon source) delivery system, indicating nearly 1.5 times that obtained from TB. Upon purification, a total of 1.65 mg/g of protein per gram cell biomass was obtained and the purified AviPure showed affinity for immunoglobulin. High cell density fed batch fermentation was achieved by selecting the best media and growth conditions, by utilizing a number of fermentation parameters like media, fermentation conditions, chemical concentrations, pO2 level, stirrer speed, pH level and feed media addition. It is possible to reach cell densities higher than shake flasks and stirred tank reactors with the improved oxygen transfer rate and feed. More... »

PAGES

70

References to SciGraph publications

  • 2008-11-18. Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks in MICROBIAL CELL FACTORIES
  • 2014-07-01. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions in JOURNAL OF BIOLOGICAL ENGINEERING
  • 2010-05-30. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor in MICROBIAL CELL FACTORIES
  • 1997-11. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2014-01-04. Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification in JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
  • 1992-12-01. Recombinant Protein Expression in High Cell Density Fed-Batch Cultures of Escherichia Coli in BIO/TECHNOLOGY
  • 2010-02-19. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures in MICROBIAL CELL FACTORIES
  • 2001-06. Innovative fermentation strategies for the production of extremophilic enzymes in EXTREMOPHILES
  • 2008-06-18. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2014-08-08. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2003-06-30. Bioprocessing of Therapeutic Proteins from the Inclusion Bodies of Escherichia coli in BIOTECHNOLOGY IN INDIA II
  • 1997-01. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2006-10-25. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440 in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13568-015-0155-y

    DOI

    http://dx.doi.org/10.1186/s13568-015-0155-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014760613

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26556030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kangwa", 
            "givenName": "Martin", 
            "id": "sg:person.0760515142.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760515142.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yelemane", 
            "givenName": "Vikas", 
            "id": "sg:person.0735404215.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735404215.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polat", 
            "givenName": "Ayse Nur", 
            "id": "sg:person.0773566010.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773566010.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorrepati", 
            "givenName": "Kanaka Durga Devi", 
            "id": "sg:person.0643661507.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643661507.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratorio de Materiales Biotecnol\u00f3gicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque S\u00e1enz Pe\u00f1a 352, B1876BXD Bernal, Argentina", 
              "id": "http://www.grid.ac/institutes/grid.11560.33", 
              "name": [
                "Laboratorio de Materiales Biotecnol\u00f3gicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque S\u00e1enz Pe\u00f1a 352, B1876BXD Bernal, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grasselli", 
            "givenName": "Mariano", 
            "id": "sg:person.01301121133.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301121133.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez-Lahore", 
            "givenName": "Marcelo", 
            "id": "sg:person.01327555030.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555030.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00253-006-0655-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038858521", 
              "https://doi.org/10.1007/s00253-006-0655-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1292-1550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015373684", 
              "https://doi.org/10.1038/nbt1292-1550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36466-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012712619", 
              "https://doi.org/10.1007/3-540-36466-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1542-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016225240", 
              "https://doi.org/10.1007/s00253-008-1542-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-5989-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045605251", 
              "https://doi.org/10.1007/s00253-014-5989-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-9-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004016470", 
              "https://doi.org/10.1186/1475-2859-9-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jim.2900355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043239420", 
              "https://doi.org/10.1038/sj.jim.2900355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10822-013-9703-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041271408", 
              "https://doi.org/10.1007/s10822-013-9703-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-9-42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024543536", 
              "https://doi.org/10.1186/1475-2859-9-42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002530051101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052327559", 
              "https://doi.org/10.1007/s002530051101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-1611-8-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049984178", 
              "https://doi.org/10.1186/1754-1611-8-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007920100194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024686470", 
              "https://doi.org/10.1007/s007920100194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-7-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000279586", 
              "https://doi.org/10.1186/1475-2859-7-31"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-11-10", 
        "datePublishedReg": "2015-11-10", 
        "description": "The major platform for high level recombinant protein production is based on genetically modified microorganisms like Escherichia coli (E. coli) due to its short dividing time, ability to use inexpensive substrates and additionally, its genetics is comparatively simple, well characterized and can be manipulated easily. Here, we investigated the possibilities of finding the best media for high cell density fermentation, by analyzing different media samples, focusing on improving fermentation techniques and recombinant protein production. Initial fermentation of E. coli BL21 DE3:pAV01 in baffled flasks showed that high cell density was achieved when using complex media, Luria-Bertani (LB) and Terrific medium broth (TB) (10 and 14\u00a0g/L wet weight, respectively), as compared to mineral media M9, modified minimal medium (MMM) and Riesenberg mineral medium (RM) (7, 8 and 7\u00a0g/L, respectively). However, in fed-batch fermentation processes when using MMM after 25\u00a0h cultivation, it was possible to yield an optical density (OD600) of 139 corresponding to 172\u00a0g/L of wet biomass was produced in a 30\u00a0L TV Techfors-S Infors HT fermenter, with a computer controlled nutrient supply (glucose as a carbon source) delivery system, indicating nearly 1.5 times that obtained from TB. Upon purification, a total of 1.65\u00a0mg/g of protein per gram cell biomass was obtained and the purified AviPure showed affinity for immunoglobulin. High cell density fed batch fermentation was achieved by selecting the best media and growth conditions, by utilizing a number of fermentation parameters like media, fermentation conditions, chemical concentrations, pO2 level, stirrer speed, pH level and feed media addition. It is possible to reach cell densities higher than shake flasks and stirred tank reactors with the improved oxygen transfer rate and feed. ", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13568-015-0155-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045217", 
            "issn": [
              "2191-0855"
            ], 
            "name": "AMB Express", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "recombinant protein production", 
          "high cell density fermentation", 
          "high-level recombinant protein production", 
          "fed-batch fermentation process", 
          "protein production", 
          "high cell density", 
          "coli BL21 DE3", 
          "density fermentation", 
          "batch fermentation", 
          "fermentation technique", 
          "fermentation conditions", 
          "fermentation process", 
          "inexpensive substrates", 
          "Baffled Flask", 
          "fermentation parameters", 
          "delivery system", 
          "fermentation", 
          "Luria-Bertani", 
          "initial fermentation", 
          "medium broth", 
          "dividing time", 
          "cell biomass", 
          "oxygen transfer rate", 
          "complex media", 
          "cell density", 
          "medium M9", 
          "minimal medium", 
          "optical density", 
          "growth conditions", 
          "transfer rate", 
          "purification", 
          "best medium", 
          "mineral medium", 
          "stirrer speed", 
          "flask", 
          "fermenter", 
          "medium addition", 
          "major platforms", 
          "Escherichia coli", 
          "staphylococcal protein", 
          "platform", 
          "substrate", 
          "density", 
          "wet biomass", 
          "coli", 
          "broth", 
          "characterization", 
          "microorganisms", 
          "production", 
          "medium", 
          "biomass", 
          "tank reactor", 
          "technique", 
          "cultivation", 
          "chemical concentrations", 
          "feed", 
          "DE3", 
          "speed", 
          "time", 
          "system", 
          "computer", 
          "media samples", 
          "protein", 
          "concentration", 
          "conditions", 
          "reactor", 
          "samples", 
          "ability", 
          "affinity", 
          "possibility", 
          "process", 
          "addition", 
          "parameters", 
          "rate", 
          "genetics", 
          "ligands", 
          "expression", 
          "M9", 
          "number", 
          "levels", 
          "immunoglobulin", 
          "total", 
          "PO2 levels", 
          "level recombinant protein production", 
          "short dividing time", 
          "cell density fermentation", 
          "different media samples", 
          "BL21 DE3", 
          "TB", 
          "mineral media M9", 
          "Riesenberg mineral medium", 
          "TV Techfors", 
          "Techfors", 
          "Infors HT fermenter", 
          "HT fermenter", 
          "nutrient supply (glucose as a carbon source) delivery system", 
          "supply (glucose as a carbon source) delivery system", 
          "AviPure", 
          "improved oxygen transfer rate", 
          "High-level fed-batch fermentative expression", 
          "fed-batch fermentative expression", 
          "fermentative expression"
        ], 
        "name": "High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization", 
        "pagination": "70", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014760613"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13568-015-0155-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26556030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13568-015-0155-y", 
          "https://app.dimensions.ai/details/publication/pub.1014760613"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_675.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13568-015-0155-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13568-015-0155-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13568-015-0155-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13568-015-0155-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13568-015-0155-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      22 PREDICATES      141 URIs      120 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13568-015-0155-y schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N9c143e980d1f4dd9833a4d820abe09b6
    4 schema:citation sg:pub.10.1007/3-540-36466-8_3
    5 sg:pub.10.1007/s00253-006-0655-4
    6 sg:pub.10.1007/s00253-008-1542-y
    7 sg:pub.10.1007/s00253-014-5989-8
    8 sg:pub.10.1007/s002530051101
    9 sg:pub.10.1007/s007920100194
    10 sg:pub.10.1007/s10822-013-9703-1
    11 sg:pub.10.1038/nbt1292-1550
    12 sg:pub.10.1038/sj.jim.2900355
    13 sg:pub.10.1186/1475-2859-7-31
    14 sg:pub.10.1186/1475-2859-9-11
    15 sg:pub.10.1186/1475-2859-9-42
    16 sg:pub.10.1186/1754-1611-8-15
    17 schema:datePublished 2015-11-10
    18 schema:datePublishedReg 2015-11-10
    19 schema:description The major platform for high level recombinant protein production is based on genetically modified microorganisms like Escherichia coli (E. coli) due to its short dividing time, ability to use inexpensive substrates and additionally, its genetics is comparatively simple, well characterized and can be manipulated easily. Here, we investigated the possibilities of finding the best media for high cell density fermentation, by analyzing different media samples, focusing on improving fermentation techniques and recombinant protein production. Initial fermentation of E. coli BL21 DE3:pAV01 in baffled flasks showed that high cell density was achieved when using complex media, Luria-Bertani (LB) and Terrific medium broth (TB) (10 and 14 g/L wet weight, respectively), as compared to mineral media M9, modified minimal medium (MMM) and Riesenberg mineral medium (RM) (7, 8 and 7 g/L, respectively). However, in fed-batch fermentation processes when using MMM after 25 h cultivation, it was possible to yield an optical density (OD600) of 139 corresponding to 172 g/L of wet biomass was produced in a 30 L TV Techfors-S Infors HT fermenter, with a computer controlled nutrient supply (glucose as a carbon source) delivery system, indicating nearly 1.5 times that obtained from TB. Upon purification, a total of 1.65 mg/g of protein per gram cell biomass was obtained and the purified AviPure showed affinity for immunoglobulin. High cell density fed batch fermentation was achieved by selecting the best media and growth conditions, by utilizing a number of fermentation parameters like media, fermentation conditions, chemical concentrations, pO2 level, stirrer speed, pH level and feed media addition. It is possible to reach cell densities higher than shake flasks and stirred tank reactors with the improved oxygen transfer rate and feed.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf Nbec8746c0d3b4e1badcfbb557de7653b
    24 Nede4a42b8a5545f0bdbe0065eb0456b7
    25 sg:journal.1045217
    26 schema:keywords AviPure
    27 BL21 DE3
    28 Baffled Flask
    29 DE3
    30 Escherichia coli
    31 HT fermenter
    32 High-level fed-batch fermentative expression
    33 Infors HT fermenter
    34 Luria-Bertani
    35 M9
    36 PO2 levels
    37 Riesenberg mineral medium
    38 TB
    39 TV Techfors
    40 Techfors
    41 ability
    42 addition
    43 affinity
    44 batch fermentation
    45 best medium
    46 biomass
    47 broth
    48 cell biomass
    49 cell density
    50 cell density fermentation
    51 characterization
    52 chemical concentrations
    53 coli
    54 coli BL21 DE3
    55 complex media
    56 computer
    57 concentration
    58 conditions
    59 cultivation
    60 delivery system
    61 density
    62 density fermentation
    63 different media samples
    64 dividing time
    65 expression
    66 fed-batch fermentation process
    67 fed-batch fermentative expression
    68 feed
    69 fermentation
    70 fermentation conditions
    71 fermentation parameters
    72 fermentation process
    73 fermentation technique
    74 fermentative expression
    75 fermenter
    76 flask
    77 genetics
    78 growth conditions
    79 high cell density
    80 high cell density fermentation
    81 high-level recombinant protein production
    82 immunoglobulin
    83 improved oxygen transfer rate
    84 inexpensive substrates
    85 initial fermentation
    86 level recombinant protein production
    87 levels
    88 ligands
    89 major platforms
    90 media samples
    91 medium
    92 medium M9
    93 medium addition
    94 medium broth
    95 microorganisms
    96 mineral media M9
    97 mineral medium
    98 minimal medium
    99 number
    100 nutrient supply (glucose as a carbon source) delivery system
    101 optical density
    102 oxygen transfer rate
    103 parameters
    104 platform
    105 possibility
    106 process
    107 production
    108 protein
    109 protein production
    110 purification
    111 rate
    112 reactor
    113 recombinant protein production
    114 samples
    115 short dividing time
    116 speed
    117 staphylococcal protein
    118 stirrer speed
    119 substrate
    120 supply (glucose as a carbon source) delivery system
    121 system
    122 tank reactor
    123 technique
    124 time
    125 total
    126 transfer rate
    127 wet biomass
    128 schema:name High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization
    129 schema:pagination 70
    130 schema:productId N316f04659e29487296ca6598c26f3c90
    131 N6aabafbdcd4642fc8d5cb19597c3da34
    132 N908f72b20dfa4ef3bef609660e3def29
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014760613
    134 https://doi.org/10.1186/s13568-015-0155-y
    135 schema:sdDatePublished 2021-11-01T18:25
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher N1134f8eed0f04c2daa1411a5dc1ab1f0
    138 schema:url https://doi.org/10.1186/s13568-015-0155-y
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N1134f8eed0f04c2daa1411a5dc1ab1f0 schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 N24e1926521d84b4cbc5f7fada7aa554c rdf:first sg:person.01301121133.13
    145 rdf:rest Nb218a9ecfcfc462199a453d4e4de22ce
    146 N316f04659e29487296ca6598c26f3c90 schema:name dimensions_id
    147 schema:value pub.1014760613
    148 rdf:type schema:PropertyValue
    149 N6aabafbdcd4642fc8d5cb19597c3da34 schema:name pubmed_id
    150 schema:value 26556030
    151 rdf:type schema:PropertyValue
    152 N908f72b20dfa4ef3bef609660e3def29 schema:name doi
    153 schema:value 10.1186/s13568-015-0155-y
    154 rdf:type schema:PropertyValue
    155 N981d4f26871d49f3979d061dcedbad43 rdf:first sg:person.0735404215.03
    156 rdf:rest Na900a9a0363c4434b755c378677b42dc
    157 N9c143e980d1f4dd9833a4d820abe09b6 rdf:first sg:person.0760515142.75
    158 rdf:rest N981d4f26871d49f3979d061dcedbad43
    159 Na900a9a0363c4434b755c378677b42dc rdf:first sg:person.0773566010.07
    160 rdf:rest Nad9f459cde1a4aad9549165ccd269184
    161 Nad9f459cde1a4aad9549165ccd269184 rdf:first sg:person.0643661507.11
    162 rdf:rest N24e1926521d84b4cbc5f7fada7aa554c
    163 Nb218a9ecfcfc462199a453d4e4de22ce rdf:first sg:person.01327555030.37
    164 rdf:rest rdf:nil
    165 Nbec8746c0d3b4e1badcfbb557de7653b schema:volumeNumber 5
    166 rdf:type schema:PublicationVolume
    167 Nede4a42b8a5545f0bdbe0065eb0456b7 schema:issueNumber 1
    168 rdf:type schema:PublicationIssue
    169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Biological Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Biochemistry and Cell Biology
    174 rdf:type schema:DefinedTerm
    175 sg:journal.1045217 schema:issn 2191-0855
    176 schema:name AMB Express
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.01301121133.13 schema:affiliation grid-institutes:grid.11560.33
    180 schema:familyName Grasselli
    181 schema:givenName Mariano
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301121133.13
    183 rdf:type schema:Person
    184 sg:person.01327555030.37 schema:affiliation grid-institutes:grid.15078.3b
    185 schema:familyName Fernández-Lahore
    186 schema:givenName Marcelo
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327555030.37
    188 rdf:type schema:Person
    189 sg:person.0643661507.11 schema:affiliation grid-institutes:grid.15078.3b
    190 schema:familyName Gorrepati
    191 schema:givenName Kanaka Durga Devi
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643661507.11
    193 rdf:type schema:Person
    194 sg:person.0735404215.03 schema:affiliation grid-institutes:grid.15078.3b
    195 schema:familyName Yelemane
    196 schema:givenName Vikas
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735404215.03
    198 rdf:type schema:Person
    199 sg:person.0760515142.75 schema:affiliation grid-institutes:grid.15078.3b
    200 schema:familyName Kangwa
    201 schema:givenName Martin
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760515142.75
    203 rdf:type schema:Person
    204 sg:person.0773566010.07 schema:affiliation grid-institutes:grid.15078.3b
    205 schema:familyName Polat
    206 schema:givenName Ayse Nur
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773566010.07
    208 rdf:type schema:Person
    209 sg:pub.10.1007/3-540-36466-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012712619
    210 https://doi.org/10.1007/3-540-36466-8_3
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00253-006-0655-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038858521
    213 https://doi.org/10.1007/s00253-006-0655-4
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s00253-008-1542-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016225240
    216 https://doi.org/10.1007/s00253-008-1542-y
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s00253-014-5989-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045605251
    219 https://doi.org/10.1007/s00253-014-5989-8
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s002530051101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052327559
    222 https://doi.org/10.1007/s002530051101
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s007920100194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024686470
    225 https://doi.org/10.1007/s007920100194
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s10822-013-9703-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041271408
    228 https://doi.org/10.1007/s10822-013-9703-1
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nbt1292-1550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015373684
    231 https://doi.org/10.1038/nbt1292-1550
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/sj.jim.2900355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043239420
    234 https://doi.org/10.1038/sj.jim.2900355
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/1475-2859-7-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000279586
    237 https://doi.org/10.1186/1475-2859-7-31
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/1475-2859-9-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004016470
    240 https://doi.org/10.1186/1475-2859-9-11
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1475-2859-9-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543536
    243 https://doi.org/10.1186/1475-2859-9-42
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/1754-1611-8-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049984178
    246 https://doi.org/10.1186/1754-1611-8-15
    247 rdf:type schema:CreativeWork
    248 grid-institutes:grid.11560.33 schema:alternateName Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
    249 schema:name Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
    250 rdf:type schema:Organization
    251 grid-institutes:grid.15078.3b schema:alternateName Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
    252 schema:name Downstream Bioprocessing Laboratory, Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...