Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-12

AUTHORS

Marion Chomet, Maxime Schreurs, Ricardo Vos, Mariska Verlaan, Esther J. Kooijman, Alex J. Poot, Ronald Boellaard, Albert D. Windhorst, Guus AMS van Dongen, Danielle J. Vugts, Marc C. Huisman, Wissam Beaino

ABSTRACT

IntroductionThe assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models.MethodsNEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland–Altman plots.ResultsIn phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8–0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used.ConclusionsOur study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13550-021-00799-2

DOI

http://dx.doi.org/10.1186/s13550-021-00799-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138792431

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34117946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chomet", 
        "givenName": "Marion", 
        "id": "sg:person.011207413071.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207413071.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreurs", 
        "givenName": "Maxime", 
        "id": "sg:person.012004773471.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012004773471.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vos", 
        "givenName": "Ricardo", 
        "id": "sg:person.013156014477.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156014477.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verlaan", 
        "givenName": "Mariska", 
        "id": "sg:person.013753375077.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753375077.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kooijman", 
        "givenName": "Esther J.", 
        "id": "sg:person.0775700570.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775700570.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poot", 
        "givenName": "Alex J.", 
        "id": "sg:person.01070325626.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070325626.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Windhorst", 
        "givenName": "Albert D.", 
        "id": "sg:person.0713207641.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713207641.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Dongen", 
        "givenName": "Guus AMS", 
        "id": "sg:person.0732223564.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732223564.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vugts", 
        "givenName": "Danielle J.", 
        "id": "sg:person.0665425270.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665425270.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huisman", 
        "givenName": "Marc C.", 
        "id": "sg:person.01006327107.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaino", 
        "givenName": "Wissam", 
        "id": "sg:person.01145644515.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145644515.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s40658-020-0286-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125614406", 
          "https://doi.org/10.1186/s40658-020-0286-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3499-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045664701", 
          "https://doi.org/10.1007/s00259-016-3499-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-020-00724-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1133379538", 
          "https://doi.org/10.1186/s13550-020-00724-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40291-013-0062-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033942587", 
          "https://doi.org/10.1007/s40291-013-0062-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-016-1035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051007320", 
          "https://doi.org/10.1007/s11307-016-1035-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-12", 
    "datePublishedReg": "2021-06-12", 
    "description": "IntroductionThe assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models.MethodsNEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~\u200914\u00a0MBq), kept 50\u00a0min under anesthesia followed by imaging for 20\u00a0min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~\u20095\u00a0MBq) and imaged 3\u00a0days post-injection for 45\u00a0min. After PET acquisition, animals were killed and organs of interest were collected and measured in a \u03b3-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland\u2013Altman plots.ResultsIn phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8\u20130.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used.ConclusionsOur study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13550-021-00799-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5493479", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "PET/CT", 
      "tumor-bearing mice", 
      "ex vivo biodistribution", 
      "preclinical models", 
      "PET imaging", 
      "vivo biodistribution", 
      "tumor uptake", 
      "PET/MR", 
      "ex vivo quantification", 
      "noninvasive longitudinal evaluation", 
      "Bland-Altman plots", 
      "IntroductionThe assessment", 
      "tracer uptake", 
      "radiotracer biodistribution", 
      "preclinical PET imaging", 
      "longitudinal evaluation", 
      "tumor model", 
      "ConclusionsOur study", 
      "DFO-NCS", 
      "VivoQuant software", 
      "ResultsIn phantoms", 
      "same animals", 
      "CT", 
      "\u03b3-counter", 
      "healthy organs", 
      "biodistribution", 
      "vivo quantification", 
      "valuable alternative technique", 
      "uptake levels", 
      "mice", 
      "animal research", 
      "organs", 
      "organs of interest", 
      "MR scanner", 
      "imaging", 
      "PET acquisition", 
      "preferred method", 
      "PET quantification", 
      "partial volume effects", 
      "PET data", 
      "MR", 
      "animals", 
      "min", 
      "ex", 
      "uptake", 
      "PET/MR scanner", 
      "anesthesia", 
      "trastuzumab", 
      "region of interest", 
      "kidney", 
      "liver", 
      "brain", 
      "alternative technique", 
      "evaluation", 
      "recovery", 
      "vivo", 
      "quantitative imaging", 
      "days", 
      "tracer quantification", 
      "PET", 
      "systemic comparison", 
      "aim", 
      "less congruent", 
      "quantification", 
      "scanner", 
      "tracer", 
      "assessment", 
      "tracer distribution", 
      "levels", 
      "study", 
      "procedure", 
      "effect", 
      "volume effects", 
      "attenuation", 
      "phantom", 
      "data", 
      "low recovery", 
      "reproducibility", 
      "lines", 
      "correction", 
      "ratio", 
      "model", 
      "potential", 
      "higher recovery coefficients", 
      "method", 
      "comparison", 
      "interest", 
      "congruent", 
      "acquisition", 
      "current ethics", 
      "radionuclides", 
      "region", 
      "research", 
      "technique", 
      "scatter correction", 
      "reliability", 
      "recovery coefficient", 
      "deviation", 
      "distribution", 
      "software", 
      "ethics", 
      "analytical procedure", 
      "coefficient", 
      "plots", 
      "performance", 
      "reconstruction algorithm", 
      "decay", 
      "solution", 
      "NU 4", 
      "algorithm"
    ], 
    "name": "Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice", 
    "pagination": "57", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138792431"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13550-021-00799-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34117946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13550-021-00799-2", 
      "https://app.dimensions.ai/details/publication/pub.1138792431"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_909.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13550-021-00799-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-021-00799-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-021-00799-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-021-00799-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-021-00799-2'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      22 PREDICATES      141 URIs      128 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13550-021-00799-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N1b08ed7b2133455b8dca579e4f7eb3e0
4 schema:citation sg:pub.10.1007/s00259-016-3499-x
5 sg:pub.10.1007/s11307-016-1035-9
6 sg:pub.10.1007/s40291-013-0062-3
7 sg:pub.10.1186/s13550-020-00724-z
8 sg:pub.10.1186/s40658-020-0286-3
9 schema:datePublished 2021-06-12
10 schema:datePublishedReg 2021-06-12
11 schema:description IntroductionThe assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models.MethodsNEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland–Altman plots.ResultsIn phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8–0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used.ConclusionsOur study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N666fb0b7a8344953aefa150852f94bc9
16 N6a69edcf00884c70b9a38dc6afba914a
17 sg:journal.1045165
18 schema:keywords Bland-Altman plots
19 CT
20 ConclusionsOur study
21 DFO-NCS
22 IntroductionThe assessment
23 MR
24 MR scanner
25 NU 4
26 PET
27 PET acquisition
28 PET data
29 PET imaging
30 PET quantification
31 PET/CT
32 PET/MR
33 PET/MR scanner
34 ResultsIn phantoms
35 VivoQuant software
36 acquisition
37 aim
38 algorithm
39 alternative technique
40 analytical procedure
41 anesthesia
42 animal research
43 animals
44 assessment
45 attenuation
46 biodistribution
47 brain
48 coefficient
49 comparison
50 congruent
51 correction
52 current ethics
53 data
54 days
55 decay
56 deviation
57 distribution
58 effect
59 ethics
60 evaluation
61 ex
62 ex vivo biodistribution
63 ex vivo quantification
64 healthy organs
65 higher recovery coefficients
66 imaging
67 interest
68 kidney
69 less congruent
70 levels
71 lines
72 liver
73 longitudinal evaluation
74 low recovery
75 method
76 mice
77 min
78 model
79 noninvasive longitudinal evaluation
80 organs
81 organs of interest
82 partial volume effects
83 performance
84 phantom
85 plots
86 potential
87 preclinical PET imaging
88 preclinical models
89 preferred method
90 procedure
91 quantification
92 quantitative imaging
93 radionuclides
94 radiotracer biodistribution
95 ratio
96 reconstruction algorithm
97 recovery
98 recovery coefficient
99 region
100 region of interest
101 reliability
102 reproducibility
103 research
104 same animals
105 scanner
106 scatter correction
107 software
108 solution
109 study
110 systemic comparison
111 technique
112 tracer
113 tracer distribution
114 tracer quantification
115 tracer uptake
116 trastuzumab
117 tumor model
118 tumor uptake
119 tumor-bearing mice
120 uptake
121 uptake levels
122 valuable alternative technique
123 vivo
124 vivo biodistribution
125 vivo quantification
126 volume effects
127 γ-counter
128 schema:name Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice
129 schema:pagination 57
130 schema:productId N5a4ec653be8b489f856df2503acc0749
131 N6be0eb57b94c4e5699aa22013598fcfa
132 Nc53b03c5aad2457cba7876f8d6549e45
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138792431
134 https://doi.org/10.1186/s13550-021-00799-2
135 schema:sdDatePublished 2022-05-20T07:39
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N58010146587f4dcbbec52562065d73c0
138 schema:url https://doi.org/10.1186/s13550-021-00799-2
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N0669ef7097d1430b920bb19848ba4146 rdf:first sg:person.0775700570.10
143 rdf:rest N108d15677f6e492fa6856449bad204ca
144 N09c60dae57ca447aaa6ad402731fccae rdf:first sg:person.01006327107.21
145 rdf:rest N4be451a074314d86a702c33d09ee2587
146 N108d15677f6e492fa6856449bad204ca rdf:first sg:person.01070325626.43
147 rdf:rest Nabcb8fc05a0d42bbb685d63f86448f78
148 N16028cbccfb244faae6f6d0b68ce70d1 rdf:first sg:person.012004773471.87
149 rdf:rest N4cd37c97eb084367b2e6e54687d179e0
150 N1b08ed7b2133455b8dca579e4f7eb3e0 rdf:first sg:person.011207413071.23
151 rdf:rest N16028cbccfb244faae6f6d0b68ce70d1
152 N4be451a074314d86a702c33d09ee2587 rdf:first sg:person.01145644515.16
153 rdf:rest rdf:nil
154 N4cd37c97eb084367b2e6e54687d179e0 rdf:first sg:person.013156014477.84
155 rdf:rest Nb17c536f88064f1dbcfdc29d64ee623a
156 N58010146587f4dcbbec52562065d73c0 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 N5a4ec653be8b489f856df2503acc0749 schema:name pubmed_id
159 schema:value 34117946
160 rdf:type schema:PropertyValue
161 N666fb0b7a8344953aefa150852f94bc9 schema:issueNumber 1
162 rdf:type schema:PublicationIssue
163 N6a69edcf00884c70b9a38dc6afba914a schema:volumeNumber 11
164 rdf:type schema:PublicationVolume
165 N6be0eb57b94c4e5699aa22013598fcfa schema:name doi
166 schema:value 10.1186/s13550-021-00799-2
167 rdf:type schema:PropertyValue
168 N71c6abdca8f9494ea743aae0ebb07f1e rdf:first sg:person.0713207641.74
169 rdf:rest Neb009ff22ad5427f8c22a2bcb5f576fe
170 N933ef9424c9e4f2f95e621c1520f3fbe rdf:first sg:person.0665425270.49
171 rdf:rest N09c60dae57ca447aaa6ad402731fccae
172 Nabcb8fc05a0d42bbb685d63f86448f78 rdf:first sg:person.01361420011.63
173 rdf:rest N71c6abdca8f9494ea743aae0ebb07f1e
174 Nb17c536f88064f1dbcfdc29d64ee623a rdf:first sg:person.013753375077.48
175 rdf:rest N0669ef7097d1430b920bb19848ba4146
176 Nc53b03c5aad2457cba7876f8d6549e45 schema:name dimensions_id
177 schema:value pub.1138792431
178 rdf:type schema:PropertyValue
179 Neb009ff22ad5427f8c22a2bcb5f576fe rdf:first sg:person.0732223564.35
180 rdf:rest N933ef9424c9e4f2f95e621c1520f3fbe
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
185 schema:name Clinical Sciences
186 rdf:type schema:DefinedTerm
187 sg:grant.5493479 http://pending.schema.org/fundedItem sg:pub.10.1186/s13550-021-00799-2
188 rdf:type schema:MonetaryGrant
189 sg:journal.1045165 schema:issn 2191-219X
190 schema:name EJNMMI Research
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.01006327107.21 schema:affiliation grid-institutes:grid.16872.3a
194 schema:familyName Huisman
195 schema:givenName Marc C.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006327107.21
197 rdf:type schema:Person
198 sg:person.01070325626.43 schema:affiliation grid-institutes:grid.16872.3a
199 schema:familyName Poot
200 schema:givenName Alex J.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070325626.43
202 rdf:type schema:Person
203 sg:person.011207413071.23 schema:affiliation grid-institutes:grid.16872.3a
204 schema:familyName Chomet
205 schema:givenName Marion
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207413071.23
207 rdf:type schema:Person
208 sg:person.01145644515.16 schema:affiliation grid-institutes:grid.16872.3a
209 schema:familyName Beaino
210 schema:givenName Wissam
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145644515.16
212 rdf:type schema:Person
213 sg:person.012004773471.87 schema:affiliation grid-institutes:grid.16872.3a
214 schema:familyName Schreurs
215 schema:givenName Maxime
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012004773471.87
217 rdf:type schema:Person
218 sg:person.013156014477.84 schema:affiliation grid-institutes:grid.16872.3a
219 schema:familyName Vos
220 schema:givenName Ricardo
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156014477.84
222 rdf:type schema:Person
223 sg:person.01361420011.63 schema:affiliation grid-institutes:grid.16872.3a
224 schema:familyName Boellaard
225 schema:givenName Ronald
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
227 rdf:type schema:Person
228 sg:person.013753375077.48 schema:affiliation grid-institutes:grid.16872.3a
229 schema:familyName Verlaan
230 schema:givenName Mariska
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753375077.48
232 rdf:type schema:Person
233 sg:person.0665425270.49 schema:affiliation grid-institutes:grid.16872.3a
234 schema:familyName Vugts
235 schema:givenName Danielle J.
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665425270.49
237 rdf:type schema:Person
238 sg:person.0713207641.74 schema:affiliation grid-institutes:grid.16872.3a
239 schema:familyName Windhorst
240 schema:givenName Albert D.
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713207641.74
242 rdf:type schema:Person
243 sg:person.0732223564.35 schema:affiliation grid-institutes:grid.16872.3a
244 schema:familyName van Dongen
245 schema:givenName Guus AMS
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732223564.35
247 rdf:type schema:Person
248 sg:person.0775700570.10 schema:affiliation grid-institutes:grid.16872.3a
249 schema:familyName Kooijman
250 schema:givenName Esther J.
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775700570.10
252 rdf:type schema:Person
253 sg:pub.10.1007/s00259-016-3499-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045664701
254 https://doi.org/10.1007/s00259-016-3499-x
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s11307-016-1035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051007320
257 https://doi.org/10.1007/s11307-016-1035-9
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s40291-013-0062-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033942587
260 https://doi.org/10.1007/s40291-013-0062-3
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/s13550-020-00724-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1133379538
263 https://doi.org/10.1186/s13550-020-00724-z
264 rdf:type schema:CreativeWork
265 sg:pub.10.1186/s40658-020-0286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125614406
266 https://doi.org/10.1186/s40658-020-0286-3
267 rdf:type schema:CreativeWork
268 grid-institutes:grid.16872.3a schema:alternateName Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
269 schema:name Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...