Optimized dual-time-window protocols for quantitative [18F]flutemetamol and [18F]florbetaben PET studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Fiona Heeman, Maqsood Yaqub, Isadora Lopes Alves, Kerstin Heurling, Johannes Berkhof, Juan Domingo Gispert, Santiago Bullich, Christopher Foley, Adriaan A. Lammertsma, on behalf of the AMYPAD Consortium

ABSTRACT

BACKGROUND: A long dynamic scanning protocol may be required to accurately measure longitudinal changes in amyloid load. However, such a protocol results in a lower patient comfort and scanning efficiency compared to static scans. A compromise can be achieved by implementing dual-time-window protocols. This study aimed to optimize these protocols for quantitative [18F]flutemetamol and [18F]florbetaben studies. METHODS: Rate constants for subjects across the Alzheimer's disease spectrum (i.e., non-displaceable binding potential (BPND) in the range 0.02-0.77 and 0.02-1.04 for [18F]flutemetamol and [18F]florbetaben, respectively) were established based on clinical [18F]flutemetamol (N = 6) and [18F]florbetaben (N = 20) data, and used to simulate tissue time-activity curves (TACs) of 110 min using a reference tissue and plasma input model. Next, noise was added (N = 50) and data points corresponding to different intervals were removed from the TACs, ranging from 0 (i.e., 90-90 = full-kinetic curve) to 80 (i.e., 10-90) minutes, creating a dual-time-window. Resulting TACs were fitted using the simplified reference tissue method (SRTM) to estimate the BPND, outliers (≥ 1.5 × BPND max) were removed and the bias was assessed using the distribution volume ratio (DVR = BPND + 1). To this end, acceptability curves, which display the fraction of data below a certain bias threshold, were generated and the area under those curves were calculated. RESULTS: [18F]Flutemetamol and [18F]florbetaben data demonstrated an increased bias in amyloid estimate for larger intervals and higher noise levels. An acceptable bias (≤ 3.1%) in DVR could be obtained with all except the 10-90 and 20-90-min intervals. Furthermore, a reduced fraction of acceptable data and most outliers were present for these two largest intervals (maximum percentage outliers 48 and 32 for [18F]flutemetamol and [18F]florbetaben, respectively). CONCLUSIONS: The length of the interval inversely correlates with the accuracy of the BPND estimates. Consequently, a dual-time-window protocol of 0-30 and 90-110 min (=maximum of 60 min interval) allows for accurate estimation of BPND values for both tracers. [18F]flutemetamol: EudraCT 2007-000784-19, registered 8 February 2007, [18F]florbetaben: EudraCT 2006-003882-15, registered 2006. More... »

PAGES

32

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13550-019-0499-4

DOI

http://dx.doi.org/10.1186/s13550-019-0499-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113046452

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30919133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amsterdam Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.484519.5", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heeman", 
        "givenName": "Fiona", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.484519.5", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yaqub", 
        "givenName": "Maqsood", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.484519.5", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopes Alves", 
        "givenName": "Isadora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Gothenburg", 
          "id": "https://www.grid.ac/institutes/grid.8761.8", 
          "name": [
            "Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, 405 30, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heurling", 
        "givenName": "Kerstin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Biostatistics, De Boelelaan, 1117, Amsterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berkhof", 
        "givenName": "Johannes", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Barcelona\u03b2eta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Bioingenier\u00eda, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabell\u00f3n 11. Planta 0, 28029, Madrid, Spain", 
            "Universitat Pompeu Fabra, Pla\u00e7a de la Merc\u00e8, 10, 08002, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gispert", 
        "givenName": "Juan Domingo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Life Molecular Imaging GmbH, Tegeler Str. 7, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bullich", 
        "givenName": "Santiago", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Electric (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.420685.d", 
          "name": [
            "GE Healthcare, Little Chalfont, HP7 9NA, Amersham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foley", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.484519.5", 
          "name": [
            "Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A.", 
        "type": "Person"
      }, 
      {
        "familyName": "on behalf of the AMYPAD Consortium", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1097/01.wcb.0000085441.37552.ca", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002335609", 
          "https://doi.org/10.1097/01.wcb.0000085441.37552.ca"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.wcb.0000085441.37552.ca", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002335609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1996.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002690366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003170900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003170900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.113654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003228602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(12)70291-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006207765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-199609000-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013680179", 
          "https://doi.org/10.1097/00004647-199609000-00008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.089730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015444921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.890120106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016365525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016415684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2016.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018014002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2014.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2014.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018881103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2016.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019434336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/00004647-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606456", 
          "https://doi.org/10.1097/00004647-200106000-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004647-200106000-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1997.0303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021838870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023326916", 
          "https://doi.org/10.1007/s00259-015-3208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023326916", 
          "https://doi.org/10.1007/s00259-015-3208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027289897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.109.063305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029411711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036289302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036289302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036289302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2015.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2015.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2012.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036591833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.04.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044212439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-010-0382-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044876212", 
          "https://doi.org/10.1007/s11307-010-0382-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3353-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045406773", 
          "https://doi.org/10.1007/s00259-016-3353-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.107185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053074561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/17/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.12.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.12.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.12.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064380472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3750-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337096", 
          "https://doi.org/10.1007/s00259-017-3750-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3750-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090337096", 
          "https://doi.org/10.1007/s00259-017-3750-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.117.200964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093007064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x18783628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104568730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-180522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108000406"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: A long dynamic scanning protocol may be required to accurately measure longitudinal changes in amyloid load. However, such a protocol results in a lower patient comfort and scanning efficiency compared to static scans. A compromise can be achieved by implementing dual-time-window protocols. This study aimed to optimize these protocols for quantitative [18F]flutemetamol and [18F]florbetaben studies.\nMETHODS: Rate constants for subjects across the Alzheimer's disease spectrum (i.e., non-displaceable binding potential (BPND) in the range 0.02-0.77 and 0.02-1.04 for [18F]flutemetamol and [18F]florbetaben, respectively) were established based on clinical [18F]flutemetamol (N\u2009=\u20096) and [18F]florbetaben (N\u2009=\u200920) data, and used to simulate tissue time-activity curves (TACs) of 110\u2009min using a reference tissue and plasma input model. Next, noise was added (N\u2009=\u200950) and data points corresponding to different intervals were removed from the TACs, ranging from 0 (i.e., 90-90\u2009=\u2009full-kinetic curve) to 80 (i.e., 10-90) minutes, creating a dual-time-window. Resulting TACs were fitted using the simplified reference tissue method (SRTM) to estimate the BPND, outliers (\u2265\u20091.5\u2009\u00d7\u2009BPND max) were removed and the bias was assessed using the distribution volume ratio (DVR\u2009=\u2009BPND\u2009+\u20091). To this end, acceptability curves, which display the fraction of data below a certain bias threshold, were generated and the area under those curves were calculated.\nRESULTS: [18F]Flutemetamol and [18F]florbetaben data demonstrated an increased bias in amyloid estimate for larger intervals and higher noise levels. An acceptable bias (\u2264\u20093.1%) in DVR could be obtained with all except the 10-90 and 20-90-min intervals. Furthermore, a reduced fraction of acceptable data and most outliers were present for these two largest intervals (maximum percentage outliers 48 and 32 for [18F]flutemetamol and [18F]florbetaben, respectively).\nCONCLUSIONS: The length of the interval inversely correlates with the accuracy of the BPND estimates. Consequently, a dual-time-window protocol of 0-30 and 90-110\u2009min (=maximum of 60\u2009min interval) allows for accurate estimation of BPND values for both tracers. [18F]flutemetamol: EudraCT 2007-000784-19, registered 8 February 2007, [18F]florbetaben: EudraCT 2006-003882-15, registered 2006.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13550-019-0499-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimized dual-time-window protocols for quantitative [18F]flutemetamol and [18F]florbetaben PET studies", 
    "pagination": "32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a4c59a5946d0ea40edb4efcac0adc72803612762bb545fa83f78ffb3343eafa8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30919133"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101560946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13550-019-0499-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113046452"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13550-019-0499-4", 
      "https://app.dimensions.ai/details/publication/pub.1113046452"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13550-019-0499-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0499-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0499-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0499-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0499-4'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13550-019-0499-4 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N8e950d493d3e413b8868e4c581d2f5ec
4 schema:citation sg:pub.10.1007/s00259-015-3208-1
5 sg:pub.10.1007/s00259-016-3353-1
6 sg:pub.10.1007/s00259-017-3750-0
7 sg:pub.10.1007/s11307-010-0382-1
8 sg:pub.10.1097/00004647-199609000-00008
9 sg:pub.10.1097/00004647-200106000-00002
10 sg:pub.10.1097/01.wcb.0000085441.37552.ca
11 https://doi.org/10.1002/syn.890120106
12 https://doi.org/10.1006/nimg.1996.0066
13 https://doi.org/10.1006/nimg.1997.0303
14 https://doi.org/10.1016/j.jalz.2014.02.001
15 https://doi.org/10.1016/j.neuroimage.2008.04.251
16 https://doi.org/10.1016/j.neuroimage.2015.07.037
17 https://doi.org/10.1016/j.nicl.2016.10.005
18 https://doi.org/10.1016/s1474-4422(12)70291-0
19 https://doi.org/10.1038/jcbfm.2014.202
20 https://doi.org/10.1038/jcbfm.2015.66
21 https://doi.org/10.1038/sj.jcbfm.9600146
22 https://doi.org/10.1038/sj.jcbfm.9600459
23 https://doi.org/10.1053/j.semnuclmed.2012.07.001
24 https://doi.org/10.1053/j.semnuclmed.2016.09.005
25 https://doi.org/10.1088/0031-9155/51/17/007
26 https://doi.org/10.1097/00004647-200106000-00002
27 https://doi.org/10.1097/01.wcb.0000085441.37552.ca
28 https://doi.org/10.1109/tac.1974.1100705
29 https://doi.org/10.1177/0271678x18783628
30 https://doi.org/10.1212/wnl.58.12.1791
31 https://doi.org/10.2967/jnumed.109.063305
32 https://doi.org/10.2967/jnumed.111.089730
33 https://doi.org/10.2967/jnumed.112.107185
34 https://doi.org/10.2967/jnumed.112.113654
35 https://doi.org/10.2967/jnumed.117.200964
36 https://doi.org/10.3233/jad-180522
37 schema:datePublished 2019-12
38 schema:datePublishedReg 2019-12-01
39 schema:description BACKGROUND: A long dynamic scanning protocol may be required to accurately measure longitudinal changes in amyloid load. However, such a protocol results in a lower patient comfort and scanning efficiency compared to static scans. A compromise can be achieved by implementing dual-time-window protocols. This study aimed to optimize these protocols for quantitative [18F]flutemetamol and [18F]florbetaben studies. METHODS: Rate constants for subjects across the Alzheimer's disease spectrum (i.e., non-displaceable binding potential (BPND) in the range 0.02-0.77 and 0.02-1.04 for [18F]flutemetamol and [18F]florbetaben, respectively) were established based on clinical [18F]flutemetamol (N = 6) and [18F]florbetaben (N = 20) data, and used to simulate tissue time-activity curves (TACs) of 110 min using a reference tissue and plasma input model. Next, noise was added (N = 50) and data points corresponding to different intervals were removed from the TACs, ranging from 0 (i.e., 90-90 = full-kinetic curve) to 80 (i.e., 10-90) minutes, creating a dual-time-window. Resulting TACs were fitted using the simplified reference tissue method (SRTM) to estimate the BPND, outliers (≥ 1.5 × BPND max) were removed and the bias was assessed using the distribution volume ratio (DVR = BPND + 1). To this end, acceptability curves, which display the fraction of data below a certain bias threshold, were generated and the area under those curves were calculated. RESULTS: [18F]Flutemetamol and [18F]florbetaben data demonstrated an increased bias in amyloid estimate for larger intervals and higher noise levels. An acceptable bias (≤ 3.1%) in DVR could be obtained with all except the 10-90 and 20-90-min intervals. Furthermore, a reduced fraction of acceptable data and most outliers were present for these two largest intervals (maximum percentage outliers 48 and 32 for [18F]flutemetamol and [18F]florbetaben, respectively). CONCLUSIONS: The length of the interval inversely correlates with the accuracy of the BPND estimates. Consequently, a dual-time-window protocol of 0-30 and 90-110 min (=maximum of 60 min interval) allows for accurate estimation of BPND values for both tracers. [18F]flutemetamol: EudraCT 2007-000784-19, registered 8 February 2007, [18F]florbetaben: EudraCT 2006-003882-15, registered 2006.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N9f04ca0af48143808209ded1bfde16e6
44 Nb2626e582e4c410e807ab22b65c59cc1
45 sg:journal.1045165
46 schema:name Optimized dual-time-window protocols for quantitative [18F]flutemetamol and [18F]florbetaben PET studies
47 schema:pagination 32
48 schema:productId N022a5781344d4f6fa2d8a969564a9f4b
49 N5d2206cf9fa94dcfada0c4817200c561
50 N770f4c565e944992b2437ef9c498aa4a
51 Nd06a9dd733af4786a71de45533f762b1
52 Nf2453c129fbd403492af618c5cf63b40
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046452
54 https://doi.org/10.1186/s13550-019-0499-4
55 schema:sdDatePublished 2019-04-11T13:21
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4d601e20be1b4501bf5c2430c84f4c4a
58 schema:url https://link.springer.com/10.1186%2Fs13550-019-0499-4
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N022a5781344d4f6fa2d8a969564a9f4b schema:name nlm_unique_id
63 schema:value 101560946
64 rdf:type schema:PropertyValue
65 N03ca535a7cd245688be6809c46182045 schema:affiliation https://www.grid.ac/institutes/grid.420685.d
66 schema:familyName Foley
67 schema:givenName Christopher
68 rdf:type schema:Person
69 N0ddaacc1be064b438508d63b03477aa5 rdf:first Nc69c7f8a70874c11a09da364116d90cf
70 rdf:rest Nb8a82a6f668a4652a195532a03a3fbc5
71 N1c3319d6c5184f44aed1490ead09523a rdf:first Nf7149254042c41fc912275366083f5eb
72 rdf:rest N30741db0e8b84f409bcad65171cf690d
73 N30741db0e8b84f409bcad65171cf690d rdf:first N442cfe139f6b4c8ba7ed05f9852735ca
74 rdf:rest N0ddaacc1be064b438508d63b03477aa5
75 N380afd7e22214481a1bd79a4c35831e3 schema:familyName on behalf of the AMYPAD Consortium
76 rdf:type schema:Person
77 N442cfe139f6b4c8ba7ed05f9852735ca schema:affiliation https://www.grid.ac/institutes/grid.12380.38
78 schema:familyName Berkhof
79 schema:givenName Johannes
80 rdf:type schema:Person
81 N4d601e20be1b4501bf5c2430c84f4c4a schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N53bfa2af04254fc8ad225b9a12b99e25 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
84 schema:familyName Lopes Alves
85 schema:givenName Isadora
86 rdf:type schema:Person
87 N5c66273b40ea47a9aaa7a7dbed8d6810 rdf:first N03ca535a7cd245688be6809c46182045
88 rdf:rest N75d66aef33c645cab39a1a27edb5ce3e
89 N5d2206cf9fa94dcfada0c4817200c561 schema:name dimensions_id
90 schema:value pub.1113046452
91 rdf:type schema:PropertyValue
92 N5e86ede3ee1c4b7b8a563ab73332f90a rdf:first N380afd7e22214481a1bd79a4c35831e3
93 rdf:rest rdf:nil
94 N613437e4b8a74f74b795e512e15e20c2 rdf:first N53bfa2af04254fc8ad225b9a12b99e25
95 rdf:rest N1c3319d6c5184f44aed1490ead09523a
96 N75d66aef33c645cab39a1a27edb5ce3e rdf:first Nd9bb487adc5d499daf88f85721715378
97 rdf:rest N5e86ede3ee1c4b7b8a563ab73332f90a
98 N770f4c565e944992b2437ef9c498aa4a schema:name doi
99 schema:value 10.1186/s13550-019-0499-4
100 rdf:type schema:PropertyValue
101 N785796b3eee44c9aa2389930c4e49558 schema:name Life Molecular Imaging GmbH, Tegeler Str. 7, 13353, Berlin, Germany
102 rdf:type schema:Organization
103 N8e950d493d3e413b8868e4c581d2f5ec rdf:first Ndd9938b95b914ae4b37d9206477f0633
104 rdf:rest Ncec63934a8d84856a53280743b95b0e6
105 N97731f61071843ebaf6f8bf143ff2877 schema:affiliation N785796b3eee44c9aa2389930c4e49558
106 schema:familyName Bullich
107 schema:givenName Santiago
108 rdf:type schema:Person
109 N9f04ca0af48143808209ded1bfde16e6 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Nb2626e582e4c410e807ab22b65c59cc1 schema:volumeNumber 9
112 rdf:type schema:PublicationVolume
113 Nb8a82a6f668a4652a195532a03a3fbc5 rdf:first N97731f61071843ebaf6f8bf143ff2877
114 rdf:rest N5c66273b40ea47a9aaa7a7dbed8d6810
115 Nc4d52c2156f845b084618962a6968673 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
116 schema:familyName Yaqub
117 schema:givenName Maqsood
118 rdf:type schema:Person
119 Nc69c7f8a70874c11a09da364116d90cf schema:affiliation https://www.grid.ac/institutes/grid.5612.0
120 schema:familyName Gispert
121 schema:givenName Juan Domingo
122 rdf:type schema:Person
123 Ncec63934a8d84856a53280743b95b0e6 rdf:first Nc4d52c2156f845b084618962a6968673
124 rdf:rest N613437e4b8a74f74b795e512e15e20c2
125 Nd06a9dd733af4786a71de45533f762b1 schema:name pubmed_id
126 schema:value 30919133
127 rdf:type schema:PropertyValue
128 Nd9bb487adc5d499daf88f85721715378 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
129 schema:familyName Lammertsma
130 schema:givenName Adriaan A.
131 rdf:type schema:Person
132 Ndd9938b95b914ae4b37d9206477f0633 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
133 schema:familyName Heeman
134 schema:givenName Fiona
135 rdf:type schema:Person
136 Nf2453c129fbd403492af618c5cf63b40 schema:name readcube_id
137 schema:value a4c59a5946d0ea40edb4efcac0adc72803612762bb545fa83f78ffb3343eafa8
138 rdf:type schema:PropertyValue
139 Nf7149254042c41fc912275366083f5eb schema:affiliation https://www.grid.ac/institutes/grid.8761.8
140 schema:familyName Heurling
141 schema:givenName Kerstin
142 rdf:type schema:Person
143 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
144 schema:name Medical and Health Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
147 schema:name Public Health and Health Services
148 rdf:type schema:DefinedTerm
149 sg:journal.1045165 schema:issn 2191-219X
150 schema:name EJNMMI Research
151 rdf:type schema:Periodical
152 sg:pub.10.1007/s00259-015-3208-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326916
153 https://doi.org/10.1007/s00259-015-3208-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00259-016-3353-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045406773
156 https://doi.org/10.1007/s00259-016-3353-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00259-017-3750-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090337096
159 https://doi.org/10.1007/s00259-017-3750-0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11307-010-0382-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044876212
162 https://doi.org/10.1007/s11307-010-0382-1
163 rdf:type schema:CreativeWork
164 sg:pub.10.1097/00004647-199609000-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013680179
165 https://doi.org/10.1097/00004647-199609000-00008
166 rdf:type schema:CreativeWork
167 sg:pub.10.1097/00004647-200106000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020606456
168 https://doi.org/10.1097/00004647-200106000-00002
169 rdf:type schema:CreativeWork
170 sg:pub.10.1097/01.wcb.0000085441.37552.ca schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335609
171 https://doi.org/10.1097/01.wcb.0000085441.37552.ca
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/syn.890120106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016365525
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/nimg.1996.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002690366
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1006/nimg.1997.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021838870
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jalz.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016415684
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.neuroimage.2008.04.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044212439
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neuroimage.2015.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027289897
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.nicl.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018014002
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1474-4422(12)70291-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006207765
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1038/jcbfm.2014.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018881103
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1038/jcbfm.2015.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295420
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1038/sj.jcbfm.9600146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036289302
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1038/sj.jcbfm.9600459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003170900
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1053/j.semnuclmed.2012.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036591833
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1053/j.semnuclmed.2016.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019434336
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/0031-9155/51/17/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026188
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/00004647-200106000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020606456
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1097/01.wcb.0000085441.37552.ca schema:sameAs https://app.dimensions.ai/details/publication/pub.1002335609
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1177/0271678x18783628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104568730
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1212/wnl.58.12.1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064380472
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2967/jnumed.109.063305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029411711
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2967/jnumed.111.089730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015444921
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2967/jnumed.112.107185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053074561
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2967/jnumed.112.113654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003228602
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2967/jnumed.117.200964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093007064
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3233/jad-180522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108000406
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.12380.38 schema:alternateName VU University Amsterdam
226 schema:name Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Biostatistics, De Boelelaan, 1117, Amsterdam, Netherlands
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.420685.d schema:alternateName General Electric (United Kingdom)
229 schema:name GE Healthcare, Little Chalfont, HP7 9NA, Amersham, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.484519.5 schema:alternateName Amsterdam Neuroscience
232 schema:name Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, Netherlands
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.5612.0 schema:alternateName Pompeu Fabra University
235 schema:name Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
236 Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
237 Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002, Barcelona, Spain
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.8761.8 schema:alternateName University of Gothenburg
240 schema:name Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, 405 30, Gothenburg, Sweden
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...