Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Jakob Albrecht, Dietrich Polenz, Anja A. Kühl, Julian M. M. Rogasch, Annekatrin Leder, Igor M. Sauer, Magor Babos, Gabor Mócsai, Nicola Beindorff, Ingo G. Steffen, Winfried Brenner, Eva J. Koziolek

ABSTRACT

BACKGROUND: Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1 Tesla PET/MRI scanners. We aimed to establish such DWI protocol with focus on the choice of b values, suitable for longitudinal monitoring of tumor characteristics in a rat liver tumor model. MATERIAL AND METHODS: DWI was first performed in 18 healthy rat livers using the scanner-dependent maximum of 4 b values (0, 100, 200, 300 s/mm2). Apparent diffusion coefficients (ADC) were calculated from different b value combinations and compared to the reference measurement with four b values. T2-weighted MRI and optimized DWI with best agreement between accuracy, scanning time, and system performance stability were used to monitor orthotopic hepatocellular carcinomas (HCC) in five rats of which three underwent additional 2-deoxy-2-(18F)fluoro-D-glucose(FDG)-PET imaging. ADCs were calculated for the tumor and the surrounding liver parenchyma and verified by histopathological analysis. RESULTS: Compared to the reference measurements, the combination b = 0, 200, 300 s/mm2 showed the highest correlation coefficient (rs = 0.92) and agreement while reducing the acquisition time. However, measurements with less than four b values yielded significantly higher ADCs (p < 0.001). When monitoring the HCC, an expected drop of the ADC was observed over time. These findings were paralleled by FDG-PET showing both an increase in tumor size and uptake heterogeneity. Interestingly, surrounding liver parenchyma also showed a change in ADC values revealing varying levels of inflammation by immunohistochemistry. CONCLUSION: We established a respiratory-gated DWI protocol for a preclinical 1 T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results. More... »

PAGES

21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13550-019-0489-6

DOI

http://dx.doi.org/10.1186/s13550-019-0489-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112315678

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Department of Nuclear Medicine, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany", 
            "German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany", 
            "German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albrecht", 
        "givenName": "Jakob", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virchow Klinikum", 
          "id": "https://www.grid.ac/institutes/grid.418434.e", 
          "name": [
            "Department of Surgery, Campus Charit\u00e9 Mitte, Luisenstra\u00dfe 64, 10117, Berlin, Germany", 
            "Department of Surgery, Campus Virchow Klinikum, Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polenz", 
        "givenName": "Dietrich", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "iPATH.Berlin \u2013 Immunopathology for Experimental Models, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Berlin Institute of Health, Core Unit, Hindenburgdamm 30, 12203, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fchl", 
        "givenName": "Anja A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Department of Nuclear Medicine, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogasch", 
        "givenName": "Julian M. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virchow Klinikum", 
          "id": "https://www.grid.ac/institutes/grid.418434.e", 
          "name": [
            "Department of Surgery, Campus Charit\u00e9 Mitte, Luisenstra\u00dfe 64, 10117, Berlin, Germany", 
            "Department of Surgery, Campus Virchow Klinikum, Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leder", 
        "givenName": "Annekatrin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virchow Klinikum", 
          "id": "https://www.grid.ac/institutes/grid.418434.e", 
          "name": [
            "Department of Surgery, Campus Charit\u00e9 Mitte, Luisenstra\u00dfe 64, 10117, Berlin, Germany", 
            "Department of Surgery, Campus Virchow Klinikum, Charit\u00e9 - Universit\u00e4tsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauer", 
        "givenName": "Igor M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mediso Medical Imaging Systems, Laborc utca 3, 1037, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babos", 
        "givenName": "Magor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mediso Medical Imaging Systems, Laborc utca 3, 1037, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f3csai", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Berlin Experimental Radionuclide Imaging Center (BERIC), Charit\u00e9 - Universit\u00e4tsmedizin Berlin, S\u00fcdstra\u00dfe 3, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beindorff", 
        "givenName": "Nicola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Department of Nuclear Medicine, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "Ingo G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Department of Nuclear Medicine, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany", 
            "German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany", 
            "Berlin Experimental Radionuclide Imaging Center (BERIC), Charit\u00e9 - Universit\u00e4tsmedizin Berlin, S\u00fcdstra\u00dfe 3, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brenner", 
        "givenName": "Winfried", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Cancer Research Center", 
          "id": "https://www.grid.ac/institutes/grid.7497.d", 
          "name": [
            "Department of Nuclear Medicine, Charit\u00e9 \u2013 Universit\u00e4tsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany", 
            "German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany", 
            "German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koziolek", 
        "givenName": "Eva J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1593/neo.81328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003791015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007417109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009367658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185115586091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011568381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185115586091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011568381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.2009.197665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011817476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013634373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.6.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013968035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019607864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019607864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00303-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00303-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026781309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032373771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.119065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035559189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036047171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037010929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejro.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039103246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2372041638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046510196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-08-1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049237691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2492071681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051038540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053275386", 
          "https://doi.org/10.1038/ncponc1073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1695690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057766928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228099673819272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.06.1403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.10.5515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069301265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v8.i1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v8.i11.857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.168.2.3393671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079720996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.161.2.3763909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079938901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083347306", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2017.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085860490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1\u00a0Tesla PET/MRI scanners. We aimed to establish such DWI protocol with focus on the choice of b values, suitable for longitudinal monitoring of tumor characteristics in a rat liver tumor model.\nMATERIAL AND METHODS: DWI was first performed in 18 healthy rat livers using the scanner-dependent maximum of 4 b values (0, 100, 200, 300\u00a0s/mm2). Apparent diffusion coefficients (ADC) were calculated from different b value combinations and compared to the reference measurement with four b\u00a0values. T2-weighted MRI and optimized DWI with best agreement between accuracy, scanning time, and system performance stability were used to monitor orthotopic hepatocellular carcinomas (HCC) in five rats of which three underwent additional 2-deoxy-2-(18F)fluoro-D-glucose(FDG)-PET imaging. ADCs were calculated for the tumor and the surrounding liver parenchyma and verified by histopathological analysis.\nRESULTS: Compared to the reference measurements, the combination b\u2009=\u20090, 200, 300\u00a0s/mm2 showed the highest correlation coefficient (rs\u2009=\u20090.92) and agreement while reducing the acquisition time. However, measurements with less than four b values yielded significantly higher ADCs (p\u2009<\u20090.001). When monitoring the HCC, an expected drop of the ADC was observed over time. These findings were paralleled by FDG-PET showing both an increase in tumor size and uptake heterogeneity. Interestingly, surrounding liver parenchyma also showed a change in ADC values revealing varying levels of inflammation by immunohistochemistry.\nCONCLUSION: We established a respiratory-gated DWI protocol for a preclinical 1\u00a0T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13550-019-0489-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats", 
    "pagination": "21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "616e7b4dbacdb6df8037db20166f2b8bc02c0b4ee00b4a3bdf81490a412b9993"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796555"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101560946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13550-019-0489-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112315678"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13550-019-0489-6", 
      "https://app.dimensions.ai/details/publication/pub.1112315678"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78953_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13550-019-0489-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0489-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0489-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0489-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0489-6'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13550-019-0489-6 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N7aebbdee53f649c495a6101a0913fbd8
4 schema:citation sg:pub.10.1038/ncponc1073
5 https://app.dimensions.ai/details/publication/pub.1083347306
6 https://doi.org/10.1002/jmri.20683
7 https://doi.org/10.1002/jmri.21227
8 https://doi.org/10.1002/jmri.21569
9 https://doi.org/10.1002/jmri.22167
10 https://doi.org/10.1002/nbm.3458
11 https://doi.org/10.1016/j.crad.2017.05.004
12 https://doi.org/10.1016/j.ejro.2016.04.002
13 https://doi.org/10.1016/j.mri.2005.11.005
14 https://doi.org/10.1016/j.radonc.2015.10.006
15 https://doi.org/10.1016/s0720-048x(02)00303-0
16 https://doi.org/10.1063/1.1695690
17 https://doi.org/10.1136/gut.2009.197665
18 https://doi.org/10.1148/radiol.2372041638
19 https://doi.org/10.1148/radiol.2492071681
20 https://doi.org/10.1148/radiology.161.2.3763909
21 https://doi.org/10.1148/radiology.168.2.3393671
22 https://doi.org/10.1158/0008-5472.can-08-1771
23 https://doi.org/10.1177/0284185115586091
24 https://doi.org/10.1177/096228029900800204
25 https://doi.org/10.1191/096228099673819272
26 https://doi.org/10.1200/jco.2003.05.069
27 https://doi.org/10.1593/neo.81328
28 https://doi.org/10.2214/ajr.06.1403
29 https://doi.org/10.2214/ajr.10.5515
30 https://doi.org/10.2463/mrms.6.211
31 https://doi.org/10.2967/jnumed.112.119065
32 https://doi.org/10.4329/wjr.v8.i1.21
33 https://doi.org/10.4329/wjr.v8.i11.857
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description BACKGROUND: Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1 Tesla PET/MRI scanners. We aimed to establish such DWI protocol with focus on the choice of b values, suitable for longitudinal monitoring of tumor characteristics in a rat liver tumor model. MATERIAL AND METHODS: DWI was first performed in 18 healthy rat livers using the scanner-dependent maximum of 4 b values (0, 100, 200, 300 s/mm2). Apparent diffusion coefficients (ADC) were calculated from different b value combinations and compared to the reference measurement with four b values. T2-weighted MRI and optimized DWI with best agreement between accuracy, scanning time, and system performance stability were used to monitor orthotopic hepatocellular carcinomas (HCC) in five rats of which three underwent additional 2-deoxy-2-(18F)fluoro-D-glucose(FDG)-PET imaging. ADCs were calculated for the tumor and the surrounding liver parenchyma and verified by histopathological analysis. RESULTS: Compared to the reference measurements, the combination b = 0, 200, 300 s/mm2 showed the highest correlation coefficient (rs = 0.92) and agreement while reducing the acquisition time. However, measurements with less than four b values yielded significantly higher ADCs (p < 0.001). When monitoring the HCC, an expected drop of the ADC was observed over time. These findings were paralleled by FDG-PET showing both an increase in tumor size and uptake heterogeneity. Interestingly, surrounding liver parenchyma also showed a change in ADC values revealing varying levels of inflammation by immunohistochemistry. CONCLUSION: We established a respiratory-gated DWI protocol for a preclinical 1 T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N374eec8d4b3d47d3876eb3cd9a1baf08
41 N99fd6f09923147868e81e90be05c552f
42 sg:journal.1045165
43 schema:name Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats
44 schema:pagination 21
45 schema:productId N1aec1d47b1794af09a6e31a8884bb550
46 N4ce2eba00f2e4509a9d7acad597ceb93
47 N99d979e744b34f71a85848c673fbc335
48 Nbca9ac3a1d324801a72abfd6a5693c36
49 Ne6fa3ac0e5f04a13b14f7df42e3a98ec
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112315678
51 https://doi.org/10.1186/s13550-019-0489-6
52 schema:sdDatePublished 2019-04-11T13:19
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N75124fdd08c94db8abb0e0bd642e6b07
55 schema:url https://link.springer.com/10.1186%2Fs13550-019-0489-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0aac3b76d7224c728a7dd70f98dce031 schema:name Mediso Medical Imaging Systems, Laborc utca 3, 1037, Budapest, Hungary
60 rdf:type schema:Organization
61 N1231b32efae34b77a8027f7224f584a5 schema:affiliation Nedb1cb6efc754ca38d45927cbdac5d7b
62 schema:familyName Mócsai
63 schema:givenName Gabor
64 rdf:type schema:Person
65 N1aec1d47b1794af09a6e31a8884bb550 schema:name readcube_id
66 schema:value 616e7b4dbacdb6df8037db20166f2b8bc02c0b4ee00b4a3bdf81490a412b9993
67 rdf:type schema:PropertyValue
68 N338d0885fb014569b01eecc5e585ee59 rdf:first Nf0ac7042c96442d6b2aab2c4cdadcf20
69 rdf:rest N5443ebf6d36c47b09fbe04fa33d40434
70 N351f8ec0ef40474fa862490838ebe0fa schema:affiliation https://www.grid.ac/institutes/grid.7497.d
71 schema:familyName Albrecht
72 schema:givenName Jakob
73 rdf:type schema:Person
74 N374eec8d4b3d47d3876eb3cd9a1baf08 schema:volumeNumber 9
75 rdf:type schema:PublicationVolume
76 N37718c79968a4b72ae48a60377fc8b10 schema:affiliation https://www.grid.ac/institutes/grid.7497.d
77 schema:familyName Koziolek
78 schema:givenName Eva J.
79 rdf:type schema:Person
80 N3b982f08472f45c49a011df6ff72723d rdf:first Nfd9db9b6cfe64bee94080769d5deea23
81 rdf:rest Nd8096e1a62fd40768c8283d97464a84f
82 N4ce2eba00f2e4509a9d7acad597ceb93 schema:name nlm_unique_id
83 schema:value 101560946
84 rdf:type schema:PropertyValue
85 N5443ebf6d36c47b09fbe04fa33d40434 rdf:first Nc1065e74b9624142a1a0643705a3e782
86 rdf:rest Nb45e151a0bcd471db74dbc1457b204f5
87 N674a847da7984fee9f7d078ca2e514ab rdf:first Nd1c3d92de53e429ebc8cb7954ce94ee6
88 rdf:rest N3b982f08472f45c49a011df6ff72723d
89 N6cb0272f97be440ab9765e0c2d268e34 rdf:first N37718c79968a4b72ae48a60377fc8b10
90 rdf:rest rdf:nil
91 N6fcf1a243b3545b49994551cb35b03ad rdf:first Ne3452666942c45ed9f75448f181d20e4
92 rdf:rest N8a3cb2b3dd894b5994ca79a548dd7fc1
93 N75124fdd08c94db8abb0e0bd642e6b07 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N7aad65cc142746f685e875a9492cb3e1 schema:affiliation N0aac3b76d7224c728a7dd70f98dce031
96 schema:familyName Babos
97 schema:givenName Magor
98 rdf:type schema:Person
99 N7aebbdee53f649c495a6101a0913fbd8 rdf:first N351f8ec0ef40474fa862490838ebe0fa
100 rdf:rest N674a847da7984fee9f7d078ca2e514ab
101 N84be8566ca2547b49e2e94ddc59fc3d2 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
102 schema:familyName Rogasch
103 schema:givenName Julian M. M.
104 rdf:type schema:Person
105 N8a3cb2b3dd894b5994ca79a548dd7fc1 rdf:first Ndc1913a5c2d3487089f71c4a131c82c7
106 rdf:rest Nc034f2b7332747479271f09722523cd0
107 N99d979e744b34f71a85848c673fbc335 schema:name dimensions_id
108 schema:value pub.1112315678
109 rdf:type schema:PropertyValue
110 N99fd6f09923147868e81e90be05c552f schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Nb45e151a0bcd471db74dbc1457b204f5 rdf:first Ne23c12c6af784ad8ba31f46ace0d2cb8
113 rdf:rest N6cb0272f97be440ab9765e0c2d268e34
114 Nbca9ac3a1d324801a72abfd6a5693c36 schema:name pubmed_id
115 schema:value 30796555
116 rdf:type schema:PropertyValue
117 Nc034f2b7332747479271f09722523cd0 rdf:first N7aad65cc142746f685e875a9492cb3e1
118 rdf:rest Nde19ebdea86e46b18835cfa0a8f73064
119 Nc1065e74b9624142a1a0643705a3e782 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
120 schema:familyName Steffen
121 schema:givenName Ingo G.
122 rdf:type schema:Person
123 Nd1c3d92de53e429ebc8cb7954ce94ee6 schema:affiliation https://www.grid.ac/institutes/grid.418434.e
124 schema:familyName Polenz
125 schema:givenName Dietrich
126 rdf:type schema:Person
127 Nd8096e1a62fd40768c8283d97464a84f rdf:first N84be8566ca2547b49e2e94ddc59fc3d2
128 rdf:rest N6fcf1a243b3545b49994551cb35b03ad
129 Ndc1913a5c2d3487089f71c4a131c82c7 schema:affiliation https://www.grid.ac/institutes/grid.418434.e
130 schema:familyName Sauer
131 schema:givenName Igor M.
132 rdf:type schema:Person
133 Nde19ebdea86e46b18835cfa0a8f73064 rdf:first N1231b32efae34b77a8027f7224f584a5
134 rdf:rest N338d0885fb014569b01eecc5e585ee59
135 Ne23c12c6af784ad8ba31f46ace0d2cb8 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
136 schema:familyName Brenner
137 schema:givenName Winfried
138 rdf:type schema:Person
139 Ne3452666942c45ed9f75448f181d20e4 schema:affiliation https://www.grid.ac/institutes/grid.418434.e
140 schema:familyName Leder
141 schema:givenName Annekatrin
142 rdf:type schema:Person
143 Ne6fa3ac0e5f04a13b14f7df42e3a98ec schema:name doi
144 schema:value 10.1186/s13550-019-0489-6
145 rdf:type schema:PropertyValue
146 Nedb1cb6efc754ca38d45927cbdac5d7b schema:name Mediso Medical Imaging Systems, Laborc utca 3, 1037, Budapest, Hungary
147 rdf:type schema:Organization
148 Nf0ac7042c96442d6b2aab2c4cdadcf20 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
149 schema:familyName Beindorff
150 schema:givenName Nicola
151 rdf:type schema:Person
152 Nfd9db9b6cfe64bee94080769d5deea23 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
153 schema:familyName Kühl
154 schema:givenName Anja A.
155 rdf:type schema:Person
156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
157 schema:name Medical and Health Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
160 schema:name Clinical Sciences
161 rdf:type schema:DefinedTerm
162 sg:journal.1045165 schema:issn 2191-219X
163 schema:name EJNMMI Research
164 rdf:type schema:Periodical
165 sg:pub.10.1038/ncponc1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053275386
166 https://doi.org/10.1038/ncponc1073
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1083347306 schema:CreativeWork
169 https://doi.org/10.1002/jmri.20683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009367658
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/jmri.21227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036047171
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/jmri.21569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032373771
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/jmri.22167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019607864
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/nbm.3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013634373
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.crad.2017.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085860490
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ejro.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039103246
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.mri.2005.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037010929
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.radonc.2015.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007417109
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0720-048x(02)00303-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026781309
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.1695690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057766928
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1136/gut.2009.197665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011817476
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1148/radiol.2372041638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046510196
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1148/radiol.2492071681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051038540
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1148/radiology.161.2.3763909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079938901
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1148/radiology.168.2.3393671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079720996
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1158/0008-5472.can-08-1771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049237691
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1177/0284185115586091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011568381
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1177/096228029900800204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090525344
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1191/096228099673819272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155357
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1200/jco.2003.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203595
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1593/neo.81328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791015
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2214/ajr.06.1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298296
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2214/ajr.10.5515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301265
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2463/mrms.6.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013968035
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2967/jnumed.112.119065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035559189
220 rdf:type schema:CreativeWork
221 https://doi.org/10.4329/wjr.v8.i1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524898
222 rdf:type schema:CreativeWork
223 https://doi.org/10.4329/wjr.v8.i11.857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524910
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.418434.e schema:alternateName Virchow Klinikum
226 schema:name Department of Surgery, Campus Charité Mitte, Luisenstraße 64, 10117, Berlin, Germany
227 Department of Surgery, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Mittelallee 4, 13353, Berlin, Germany
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.6363.0 schema:alternateName Charité
230 schema:name Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Südstraße 3, 13353, Berlin, Germany
231 Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
232 German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
233 iPATH.Berlin – Immunopathology for Experimental Models, Charité – Universitätsmedizin Berlin, Berlin Institute of Health, Core Unit, Hindenburgdamm 30, 12203, Berlin, Germany
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.7497.d schema:alternateName German Cancer Research Center
236 schema:name Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
237 German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
238 German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...