Impact of a combination of quantitative indices representing uptake intensity, shape, and asymmetry in DAT SPECT using machine learning: comparison ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yu Iwabuchi, Tadaki Nakahara, Masashi Kameyama, Yoshitake Yamada, Masahiro Hashimoto, Yohji Matsusaka, Takashi Osada, Daisuke Ito, Hajime Tabuchi, Masahiro Jinzaki

ABSTRACT

BACKGROUND: We sought to assess the machine learning-based combined diagnostic accuracy of three types of quantitative indices obtained using dopamine transporter single-photon emission computed tomography (DAT SPECT)-specific binding ratio (SBR), putamen-to-caudate ratio (PCR)/fractal dimension (FD), and asymmetry index (AI)-for parkinsonian syndrome (PS). We also aimed to compare the effect of two different types of volume of interest (VOI) settings from commercially available software packages DaTQUANT (Q) and DaTView (V) on diagnostic accuracy. METHODS: Seventy-one patients with PS and 40 without PS (NPS) were enrolled. Using SPECT images obtained from these patients, three quantitative indices were calculated at two different VOI settings each. SBR-Q, PCR-Q, and AI-Q were derived using the VOI settings from DaTQUANT, whereas SBR-V, FD-V, and AI-V were derived using those from DaTView. We compared the diagnostic value of these six indices for PS. We incorporated a support vector machine (SVM) classifier for assessing the combined accuracy of the three indices (SVM-Q: combination of SBR-Q, PCR-Q, and AI-Q; SVM-V: combination of SBR-V, FD-V, and AI-V). A Mann-Whitney U test and receiver-operating characteristics (ROC) analysis were used for statistical analyses. RESULTS: ROC analyses demonstrated that the areas under the curve (AUC) for SBR-Q, PCR-Q, AI-Q, SBR-V, FD-V, and AI-V were 0.978, 0.837, 0.802, 0.906, 0.972, and 0.829, respectively. On comparing the corresponding quantitative indices between the two types of VOI settings, SBR-Q performed better than SBR-V (p = 0.006), whereas FD-V performed better than PCR-Q (p = 0.0003). No significant difference was observed between AI-Q and AI-V (p = 0.56). The AUCs for SVM-Q and SVM-V were 0.988 and 0.994, respectively; the two different VOI settings displayed no significant differences in terms of diagnostic accuracy (p = 0.48). CONCLUSION: The combination of the three indices obtained using the SVM classifier improved the diagnostic performance for PS; this performance did not differ based on the VOI settings and software used. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13550-019-0477-x

DOI

http://dx.doi.org/10.1186/s13550-019-0477-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111682441

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30689072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwabuchi", 
        "givenName": "Yu", 
        "id": "sg:person.012322042267.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322042267.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakahara", 
        "givenName": "Tadaki", 
        "id": "sg:person.012370275373.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370275373.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan Geriatric Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417092.9", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan", 
            "Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, 173-0015, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kameyama", 
        "givenName": "Masashi", 
        "id": "sg:person.015400575001.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015400575001.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Yoshitake", 
        "id": "sg:person.01015766155.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015766155.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Masahiro", 
        "id": "sg:person.0775627007.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775627007.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsusaka", 
        "givenName": "Yohji", 
        "id": "sg:person.01056237453.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056237453.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osada", 
        "givenName": "Takashi", 
        "id": "sg:person.01175454414.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175454414.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Daisuke", 
        "id": "sg:person.0712272264.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712272264.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabuchi", 
        "givenName": "Hajime", 
        "id": "sg:person.011307110345.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307110345.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keio University", 
          "id": "https://www.grid.ac/institutes/grid.26091.3c", 
          "name": [
            "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jinzaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.01362623133.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623133.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00259-012-2276-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008102551", 
          "https://doi.org/10.1007/s00259-012-2276-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010344471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1920-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012067880", 
          "https://doi.org/10.1007/s00259-005-1920-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-005-1920-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012067880", 
          "https://doi.org/10.1007/s00259-005-1920-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neures.2006.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015210726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.21479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015547100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2882-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018065707", 
          "https://doi.org/10.1007/s00259-014-2882-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.100784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021326368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/837439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026765713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nrl.2016.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039542957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0155-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039858530", 
          "https://doi.org/10.1007/s00259-006-0155-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0155-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039858530", 
          "https://doi.org/10.1007/s00259-006-0155-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2977-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042471430", 
          "https://doi.org/10.1007/s00330-013-2977-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1531-8257(200011)15:6<1158::aid-mds1015>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044882603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-003-1343-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045980342", 
          "https://doi.org/10.1007/s00259-003-1343-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-016-1107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334518", 
          "https://doi.org/10.1007/s12149-016-1107-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-016-1107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334518", 
          "https://doi.org/10.1007/s12149-016-1107-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4742055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051018928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000324625.00404.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000324625.00404.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000324625.00404.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064350483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.171.6.9843308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069322079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-017-0175-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074230518", 
          "https://doi.org/10.1186/s40658-017-0175-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-017-0175-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074230518", 
          "https://doi.org/10.1186/s40658-017-0175-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074624285", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074889511", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077076567", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jns.2017.03.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084090179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jns.2017.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084861963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mds.26987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085122794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000004058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085919760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000004058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085919760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000004058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085919760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-017-0196-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093083958", 
          "https://doi.org/10.1186/s40658-017-0196-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-017-3918-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099931104", 
          "https://doi.org/10.1007/s00259-017-3918-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-018-1249-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101542632", 
          "https://doi.org/10.1007/s12149-018-1249-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-018-1249-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101542632", 
          "https://doi.org/10.1007/s12149-018-1249-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-018-1249-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101542632", 
          "https://doi.org/10.1007/s12149-018-1249-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-018-1249-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101542632", 
          "https://doi.org/10.1007/s12149-018-1249-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-018-1256-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103249767", 
          "https://doi.org/10.1007/s12149-018-1256-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: We sought to assess the machine learning-based combined diagnostic accuracy of three types of quantitative indices obtained using dopamine transporter single-photon emission computed tomography (DAT SPECT)-specific binding ratio (SBR), putamen-to-caudate ratio (PCR)/fractal dimension (FD), and asymmetry index (AI)-for parkinsonian syndrome (PS). We also aimed to compare the effect of two different types of volume of interest (VOI) settings from commercially available software packages DaTQUANT (Q) and DaTView (V) on diagnostic accuracy.\nMETHODS: Seventy-one patients with PS and 40 without PS (NPS) were enrolled. Using SPECT images obtained from these patients, three quantitative indices were calculated at two different VOI settings each. SBR-Q, PCR-Q, and AI-Q were derived using the VOI settings from DaTQUANT, whereas SBR-V, FD-V, and AI-V were derived using those from DaTView. We compared the diagnostic value of these six indices for PS. We incorporated a support vector machine (SVM) classifier for assessing the combined accuracy of the three indices (SVM-Q: combination of SBR-Q, PCR-Q, and AI-Q; SVM-V: combination of SBR-V, FD-V, and AI-V). A Mann-Whitney U test and receiver-operating characteristics (ROC) analysis were used for statistical analyses.\nRESULTS: ROC analyses demonstrated that the areas under the curve (AUC) for SBR-Q, PCR-Q, AI-Q, SBR-V, FD-V, and AI-V were 0.978, 0.837, 0.802, 0.906, 0.972, and 0.829, respectively. On comparing the corresponding quantitative indices between the two types of VOI settings, SBR-Q performed better than SBR-V (p\u2009=\u20090.006), whereas FD-V performed better than PCR-Q (p\u2009=\u20090.0003). No significant difference was observed between AI-Q and AI-V (p\u2009=\u20090.56). The AUCs for SVM-Q and SVM-V were 0.988 and 0.994, respectively; the two different VOI settings displayed no significant differences in terms of diagnostic accuracy (p\u2009=\u20090.48).\nCONCLUSION: The combination of the three indices obtained using the SVM classifier improved the diagnostic performance for PS; this performance did not differ based on the VOI settings and software used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13550-019-0477-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Impact of a combination of quantitative indices representing uptake intensity, shape, and asymmetry in DAT SPECT using machine learning: comparison of different volume of interest settings", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40ecf17d647aae9e16cb2bee96afa3889a407ab008e6d93ceeb9c205c3273bd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30689072"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101560946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13550-019-0477-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111682441"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13550-019-0477-x", 
      "https://app.dimensions.ai/details/publication/pub.1111682441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68457_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13550-019-0477-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0477-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0477-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0477-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-019-0477-x'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13550-019-0477-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na427e5fda2db41cebe119aa49a701eec
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/s00259-003-1343-6
6 sg:pub.10.1007/s00259-005-1920-y
7 sg:pub.10.1007/s00259-006-0155-x
8 sg:pub.10.1007/s00259-012-2276-8
9 sg:pub.10.1007/s00259-014-2882-8
10 sg:pub.10.1007/s00259-017-3918-7
11 sg:pub.10.1007/s00330-013-2977-9
12 sg:pub.10.1007/s12149-016-1107-6
13 sg:pub.10.1007/s12149-018-1249-9
14 sg:pub.10.1007/s12149-018-1256-x
15 sg:pub.10.1186/s40658-017-0175-6
16 sg:pub.10.1186/s40658-017-0196-1
17 https://app.dimensions.ai/details/publication/pub.1074624285
18 https://app.dimensions.ai/details/publication/pub.1074889511
19 https://app.dimensions.ai/details/publication/pub.1077076567
20 https://doi.org/10.1002/1531-8257(200011)15:6<1158::aid-mds1015>3.0.co;2-0
21 https://doi.org/10.1002/mds.1256
22 https://doi.org/10.1002/mds.21479
23 https://doi.org/10.1002/mds.26987
24 https://doi.org/10.1016/j.jns.2017.03.040
25 https://doi.org/10.1016/j.jns.2017.04.026
26 https://doi.org/10.1016/j.neures.2006.03.006
27 https://doi.org/10.1016/j.nrl.2016.04.011
28 https://doi.org/10.1118/1.4742055
29 https://doi.org/10.1155/2014/837439
30 https://doi.org/10.1212/01.wnl.0000324625.00404.15
31 https://doi.org/10.1212/wnl.0000000000004058
32 https://doi.org/10.2214/ajr.171.6.9843308
33 https://doi.org/10.2307/2531595
34 https://doi.org/10.2967/jnumed.111.100784
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description BACKGROUND: We sought to assess the machine learning-based combined diagnostic accuracy of three types of quantitative indices obtained using dopamine transporter single-photon emission computed tomography (DAT SPECT)-specific binding ratio (SBR), putamen-to-caudate ratio (PCR)/fractal dimension (FD), and asymmetry index (AI)-for parkinsonian syndrome (PS). We also aimed to compare the effect of two different types of volume of interest (VOI) settings from commercially available software packages DaTQUANT (Q) and DaTView (V) on diagnostic accuracy. METHODS: Seventy-one patients with PS and 40 without PS (NPS) were enrolled. Using SPECT images obtained from these patients, three quantitative indices were calculated at two different VOI settings each. SBR-Q, PCR-Q, and AI-Q were derived using the VOI settings from DaTQUANT, whereas SBR-V, FD-V, and AI-V were derived using those from DaTView. We compared the diagnostic value of these six indices for PS. We incorporated a support vector machine (SVM) classifier for assessing the combined accuracy of the three indices (SVM-Q: combination of SBR-Q, PCR-Q, and AI-Q; SVM-V: combination of SBR-V, FD-V, and AI-V). A Mann-Whitney U test and receiver-operating characteristics (ROC) analysis were used for statistical analyses. RESULTS: ROC analyses demonstrated that the areas under the curve (AUC) for SBR-Q, PCR-Q, AI-Q, SBR-V, FD-V, and AI-V were 0.978, 0.837, 0.802, 0.906, 0.972, and 0.829, respectively. On comparing the corresponding quantitative indices between the two types of VOI settings, SBR-Q performed better than SBR-V (p = 0.006), whereas FD-V performed better than PCR-Q (p = 0.0003). No significant difference was observed between AI-Q and AI-V (p = 0.56). The AUCs for SVM-Q and SVM-V were 0.988 and 0.994, respectively; the two different VOI settings displayed no significant differences in terms of diagnostic accuracy (p = 0.48). CONCLUSION: The combination of the three indices obtained using the SVM classifier improved the diagnostic performance for PS; this performance did not differ based on the VOI settings and software used.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N7c2107bc60b546fbacd8d78e2f41b57f
42 Na7f592e1dda6442da190c2329f42e5eb
43 sg:journal.1045165
44 schema:name Impact of a combination of quantitative indices representing uptake intensity, shape, and asymmetry in DAT SPECT using machine learning: comparison of different volume of interest settings
45 schema:pagination 7
46 schema:productId N3efbdd660d7d4df1be2cad567b6b9ed6
47 N51355f9a51c349deb96ba4e685e9b71c
48 N813374e4bd314bb3a16081de723c7ae4
49 N9c834fe44b254e99b08eb1e05d86ae98
50 Ndf9908ee7578409384513cd4be56ae50
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111682441
52 https://doi.org/10.1186/s13550-019-0477-x
53 schema:sdDatePublished 2019-04-11T08:58
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ne34a8f2b3cbf4bc49001250f3a628d22
56 schema:url https://link.springer.com/10.1186%2Fs13550-019-0477-x
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N19e56fb2392c4ad99480769a3497aeaf rdf:first sg:person.011307110345.45
61 rdf:rest N8e393bdccd0c417d93ab89ed99e31dc7
62 N393cd3ddbf1e4003b6d47dbe43896ccf rdf:first sg:person.01015766155.89
63 rdf:rest N3f297ab7073546408104658585547ea7
64 N3efbdd660d7d4df1be2cad567b6b9ed6 schema:name dimensions_id
65 schema:value pub.1111682441
66 rdf:type schema:PropertyValue
67 N3f297ab7073546408104658585547ea7 rdf:first sg:person.0775627007.22
68 rdf:rest N8b434a14dbd243ffa5018cd7fc106084
69 N51355f9a51c349deb96ba4e685e9b71c schema:name readcube_id
70 schema:value 40ecf17d647aae9e16cb2bee96afa3889a407ab008e6d93ceeb9c205c3273bd5
71 rdf:type schema:PropertyValue
72 N68e3607f063d43ccb2dc4aac22190951 rdf:first sg:person.0712272264.28
73 rdf:rest N19e56fb2392c4ad99480769a3497aeaf
74 N69038a021c314fa082e96609e93bab3c rdf:first sg:person.012370275373.93
75 rdf:rest Ne06b1c4b99ac4a2381c51942c5a3695e
76 N6fca1027757440f999db1c26f1144cc0 rdf:first sg:person.01175454414.57
77 rdf:rest N68e3607f063d43ccb2dc4aac22190951
78 N7c2107bc60b546fbacd8d78e2f41b57f schema:volumeNumber 9
79 rdf:type schema:PublicationVolume
80 N813374e4bd314bb3a16081de723c7ae4 schema:name nlm_unique_id
81 schema:value 101560946
82 rdf:type schema:PropertyValue
83 N8b434a14dbd243ffa5018cd7fc106084 rdf:first sg:person.01056237453.35
84 rdf:rest N6fca1027757440f999db1c26f1144cc0
85 N8e393bdccd0c417d93ab89ed99e31dc7 rdf:first sg:person.01362623133.24
86 rdf:rest rdf:nil
87 N9c834fe44b254e99b08eb1e05d86ae98 schema:name doi
88 schema:value 10.1186/s13550-019-0477-x
89 rdf:type schema:PropertyValue
90 Na427e5fda2db41cebe119aa49a701eec rdf:first sg:person.012322042267.53
91 rdf:rest N69038a021c314fa082e96609e93bab3c
92 Na7f592e1dda6442da190c2329f42e5eb schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Ndf9908ee7578409384513cd4be56ae50 schema:name pubmed_id
95 schema:value 30689072
96 rdf:type schema:PropertyValue
97 Ne06b1c4b99ac4a2381c51942c5a3695e rdf:first sg:person.015400575001.19
98 rdf:rest N393cd3ddbf1e4003b6d47dbe43896ccf
99 Ne34a8f2b3cbf4bc49001250f3a628d22 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:journal.1045165 schema:issn 2191-219X
108 schema:name EJNMMI Research
109 rdf:type schema:Periodical
110 sg:person.01015766155.89 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
111 schema:familyName Yamada
112 schema:givenName Yoshitake
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015766155.89
114 rdf:type schema:Person
115 sg:person.01056237453.35 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
116 schema:familyName Matsusaka
117 schema:givenName Yohji
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056237453.35
119 rdf:type schema:Person
120 sg:person.011307110345.45 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
121 schema:familyName Tabuchi
122 schema:givenName Hajime
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307110345.45
124 rdf:type schema:Person
125 sg:person.01175454414.57 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
126 schema:familyName Osada
127 schema:givenName Takashi
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175454414.57
129 rdf:type schema:Person
130 sg:person.012322042267.53 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
131 schema:familyName Iwabuchi
132 schema:givenName Yu
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012322042267.53
134 rdf:type schema:Person
135 sg:person.012370275373.93 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
136 schema:familyName Nakahara
137 schema:givenName Tadaki
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370275373.93
139 rdf:type schema:Person
140 sg:person.01362623133.24 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
141 schema:familyName Jinzaki
142 schema:givenName Masahiro
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623133.24
144 rdf:type schema:Person
145 sg:person.015400575001.19 schema:affiliation https://www.grid.ac/institutes/grid.417092.9
146 schema:familyName Kameyama
147 schema:givenName Masashi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015400575001.19
149 rdf:type schema:Person
150 sg:person.0712272264.28 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
151 schema:familyName Ito
152 schema:givenName Daisuke
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712272264.28
154 rdf:type schema:Person
155 sg:person.0775627007.22 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
156 schema:familyName Hashimoto
157 schema:givenName Masahiro
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775627007.22
159 rdf:type schema:Person
160 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
161 https://doi.org/10.1007/978-1-4757-2440-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00259-003-1343-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045980342
164 https://doi.org/10.1007/s00259-003-1343-6
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00259-005-1920-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012067880
167 https://doi.org/10.1007/s00259-005-1920-y
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00259-006-0155-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039858530
170 https://doi.org/10.1007/s00259-006-0155-x
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00259-012-2276-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008102551
173 https://doi.org/10.1007/s00259-012-2276-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00259-014-2882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018065707
176 https://doi.org/10.1007/s00259-014-2882-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00259-017-3918-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099931104
179 https://doi.org/10.1007/s00259-017-3918-7
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00330-013-2977-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042471430
182 https://doi.org/10.1007/s00330-013-2977-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s12149-016-1107-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334518
185 https://doi.org/10.1007/s12149-016-1107-6
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s12149-018-1249-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101542632
188 https://doi.org/10.1007/s12149-018-1249-9
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s12149-018-1256-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103249767
191 https://doi.org/10.1007/s12149-018-1256-x
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/s40658-017-0175-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074230518
194 https://doi.org/10.1186/s40658-017-0175-6
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/s40658-017-0196-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093083958
197 https://doi.org/10.1186/s40658-017-0196-1
198 rdf:type schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1074624285 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1074889511 schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077076567 schema:CreativeWork
202 https://doi.org/10.1002/1531-8257(200011)15:6<1158::aid-mds1015>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044882603
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/mds.1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010344471
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/mds.21479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015547100
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/mds.26987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085122794
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jns.2017.03.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084090179
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jns.2017.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084861963
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.neures.2006.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015210726
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.nrl.2016.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039542957
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1118/1.4742055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051018928
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1155/2014/837439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026765713
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1212/01.wnl.0000324625.00404.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064350483
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1212/wnl.0000000000004058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085919760
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2214/ajr.171.6.9843308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069322079
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2967/jnumed.111.100784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021326368
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
233 schema:name Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan
234 Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan
235 Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.417092.9 schema:alternateName Tokyo Metropolitan Geriatric Hospital
238 schema:name Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, 173-0015, Tokyo, Japan
239 Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, 160-8582, Tokyo, Japan
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...