Prognostic value of simultaneous 18F-FDG PET/MRI using a combination of metabolo-volumetric parameters and apparent diffusion coefficient in treated head and ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-10

AUTHORS

Yong-il Kim, Gi Jeong Cheon, Seo Young Kang, Jin Chul Paeng, Keon Wook Kang, Dong Soo Lee, June-Key Chung

ABSTRACT

BackgroundThe aim of this study was to determine the usefulness of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) parameters provided by simultaneous 18F-fluorodeoxyglucose (FDG) PET/MRI for the prediction of treatment failure in surgically resected head and neck cancer. We hypothesized that PET parameters corrected by tumor cellularity (combined PET/MRI parameters) could predict the prognosis. On regional PET, maximum standardized uptake value (SUVmax) was measured as metabolic parameters. In addition, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were checked as metabolo-volumetric parameters. Mean apparent diffusion coefficient (ADCmean) of tumor was evaluated as the MRI parameter on the ADC map. Ratios between metabolic/metabolo-volumetric parameters and ADC were calculated as combined PET/MRI parameters. PET, MRI, and combined PET/MRI parameters were compared with clinicopathologic parameters in terms of treatment failure.ResultsSeventy-two patients (mean age = 55.9 ± 14.6 year, M: F = 45: 27) who underwent simultaneous 18F-FDG PET/MRI before head and neck cancer surgery were retrospectively enrolled. Twenty-two patients (30.6%) showed tumor treatment failure after head and neck cancer surgery (mean treatment failure = 13.0 ± 7.0 months). In the univariate analysis, MTV (P = 0.044) and ratios between metabolo-volumetric parameters and ADC (MTV/ADCmean, P = 0.022; TLG/ADCmean, P = 0.044) demonstrated significance among 18F-FDG PET/MRI parameters. Lymphatic invasion (P = 0.044) and perineural invasion (P = 0.046) revealed significance among clinicopathologic parameters. In the multivariate analysis, MTV (P = 0.026), MTV/ADCmean (P = 0.011), and TLG/ADCmean (P = 0.002) with lymphatic invasion (P = 0.026, 0.026, and 0.044, respectively) showed significance.ConclusionsCombined PET/MRI parameters (PET metabolo-volumetric parameters corrected by tumor cellularity) could be effective predictors of tumor treatment failure after head and neck cancer surgery in addition to MTV and clinicopathologic parameter. More... »

PAGES

2

References to SciGraph publications

  • 2014-03-20. Diffusion Imaging of the Head and Neck in CURRENT RADIOLOGY REPORTS
  • 2017-08-15. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: Diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences in EUROPEAN RADIOLOGY
  • 2002-02-12. FDG–PET. A possible prognostic factor in head and neck cancer in BRITISH JOURNAL OF CANCER
  • 2013-02-28. Whole-body PET/MRI in oncology: current status and clinical applications in CLINICAL AND TRANSLATIONAL IMAGING
  • 2007-12-11. How useful is the assessment of lymphatic vascular density in oral carcinoma prognosis? in WORLD JOURNAL OF SURGICAL ONCOLOGY
  • 2013-05-23. A new method for apparent diffusion coefficient measurement using sequential 18F-FDG PET and MRI: correlation with histological grade of invasive ductal carcinoma of the breast in ANNALS OF NUCLEAR MEDICINE
  • 2010-11-16. Prognostic Value of Metabolic Tumor Volume Measured by 18F-FDG PET/CT in Locally Advanced Head and Neck Squamous Cell Carcinomas Treated by Surgery in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-06-29. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC) in HEAD & NECK ONCOLOGY
  • 2012-04-25. Use of pretreatment metabolic tumour volumes to predict the outcome of pharyngeal cancer treated by definitive radiotherapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-07-17. Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases in SCIENTIFIC REPORTS
  • 2016-03-10. Combining standardized uptake value of FDG-PET and apparent diffusion coefficient of DW-MRI improves risk stratification in head and neck squamous cell carcinoma in EUROPEAN RADIOLOGY
  • 2006-11-14. Prognostic Significance of Immunohistochemically Detected Blood and Lymphatic Vessel Invasion in Colorectal Carcinoma: Its Impact on Prognosis in ANNALS OF SURGICAL ONCOLOGY
  • 2016-08-19. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations in CANCER IMAGING
  • 2013-12-06. Usefulness of Integrated PET/MRI in Head and Neck Cancer: A Preliminary Study in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13550-018-0357-9

    DOI

    http://dx.doi.org/10.1186/s13550-018-0357-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100302319

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29322269


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.413967.e", 
              "name": [
                "Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
                "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Yong-il", 
            "id": "sg:person.01001337521.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheon", 
            "givenName": "Gi Jeong", 
            "id": "sg:person.01333472502.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Seo Young", 
            "id": "sg:person.010434512657.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434512657.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paeng", 
            "givenName": "Jin Chul", 
            "id": "sg:person.01343511335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Keon Wook", 
            "id": "sg:person.0761746266.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chung", 
            "givenName": "June-Key", 
            "id": "sg:person.0751347234.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep12242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024517924", 
              "https://doi.org/10.1038/srep12242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-010-0063-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047786893", 
              "https://doi.org/10.1007/s13139-010-0063-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40134-014-0049-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035437724", 
              "https://doi.org/10.1007/s40134-014-0049-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-006-9189-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004490708", 
              "https://doi.org/10.1245/s10434-006-9189-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-013-0737-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005241351", 
              "https://doi.org/10.1007/s12149-013-0737-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-016-4284-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046072055", 
              "https://doi.org/10.1007/s00330-016-4284-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40336-013-0012-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035583904", 
              "https://doi.org/10.1007/s40336-013-0012-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-013-0252-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039803046", 
              "https://doi.org/10.1007/s13139-013-0252-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1477-7819-5-140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043121248", 
              "https://doi.org/10.1186/1477-7819-5-140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6600114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015841148", 
              "https://doi.org/10.1038/sj.bjc.6600114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1758-3284-2-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003684051", 
              "https://doi.org/10.1186/1758-3284-2-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2127-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003945389", 
              "https://doi.org/10.1007/s00259-012-2127-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4999-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091217846", 
              "https://doi.org/10.1007/s00330-017-4999-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-016-0080-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019011515", 
              "https://doi.org/10.1186/s40644-016-0080-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-01-10", 
        "datePublishedReg": "2018-01-10", 
        "description": "BackgroundThe aim of this study was to determine the usefulness of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) parameters provided by simultaneous 18F-fluorodeoxyglucose (FDG) PET/MRI for the prediction of treatment failure in surgically resected head and neck cancer. We hypothesized that PET parameters corrected by tumor cellularity (combined PET/MRI parameters) could predict the prognosis. On regional PET, maximum standardized uptake value (SUVmax) was measured as metabolic parameters. In addition, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were checked as metabolo-volumetric parameters. Mean apparent diffusion coefficient (ADCmean) of tumor was evaluated as the MRI parameter on the ADC map. Ratios between metabolic/metabolo-volumetric parameters and ADC were calculated as combined PET/MRI parameters. PET, MRI, and combined PET/MRI parameters were compared with clinicopathologic parameters in terms of treatment failure.ResultsSeventy-two patients (mean age\u2009=\u200955.9\u2009\u00b1\u200914.6 year, M: F\u2009=\u200945: 27) who underwent simultaneous 18F-FDG PET/MRI before head and neck cancer surgery were retrospectively enrolled. Twenty-two patients (30.6%) showed tumor treatment failure after head and neck cancer surgery (mean treatment failure\u2009=\u200913.0\u2009\u00b1\u20097.0\u00a0months). In the univariate analysis, MTV (P\u2009=\u20090.044) and ratios between metabolo-volumetric parameters and ADC (MTV/ADCmean, P\u2009=\u20090.022; TLG/ADCmean, P\u2009=\u20090.044) demonstrated significance among 18F-FDG PET/MRI parameters. Lymphatic invasion (P\u2009=\u20090.044) and perineural invasion (P\u2009=\u20090.046) revealed significance among clinicopathologic parameters. In the multivariate analysis, MTV (P\u2009=\u20090.026), MTV/ADCmean (P\u2009=\u20090.011), and TLG/ADCmean (P\u2009=\u20090.002) with lymphatic invasion (P\u2009=\u20090.026, 0.026, and 0.044, respectively) showed significance.ConclusionsCombined PET/MRI parameters (PET metabolo-volumetric parameters corrected by tumor cellularity) could be effective predictors of tumor treatment failure after head and neck cancer surgery in addition to MTV and clinicopathologic parameter.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13550-018-0357-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045165", 
            "issn": [
              "2191-219X"
            ], 
            "name": "EJNMMI Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "metabolic tumor volume", 
          "neck cancer surgery", 
          "positron emission tomography", 
          "tumor treatment failure", 
          "total lesion glycolysis", 
          "treatment failure", 
          "PET/MRI", 
          "cancer surgery", 
          "MRI parameters", 
          "clinicopathologic parameters", 
          "lymphatic invasion", 
          "neck cancer", 
          "maximum standardized uptake value", 
          "apparent diffusion coefficient", 
          "ResultsSeventy-two patients", 
          "standardized uptake value", 
          "lesion glycolysis", 
          "perineural invasion", 
          "prognostic value", 
          "univariate analysis", 
          "metabolic parameters", 
          "PET parameters", 
          "tumor volume", 
          "uptake value", 
          "multivariate analysis", 
          "emission tomography", 
          "tumor cellularity", 
          "surgery", 
          "MRI", 
          "ADC maps", 
          "patients", 
          "cancer", 
          "imaging parameters", 
          "invasion", 
          "ADCmean", 
          "effective predictor", 
          "failure", 
          "head", 
          "prognosis", 
          "tumors", 
          "cellularity", 
          "significance", 
          "tomography", 
          "predictors", 
          "glycolysis", 
          "aim", 
          "addition", 
          "study", 
          "ratio", 
          "usefulness", 
          "analysis", 
          "volume", 
          "combination", 
          "values", 
          "parameters", 
          "ADC", 
          "terms", 
          "coefficient", 
          "diffusion coefficient", 
          "prediction", 
          "maps"
        ], 
        "name": "Prognostic value of simultaneous 18F-FDG PET/MRI using a combination of metabolo-volumetric parameters and apparent diffusion coefficient in treated head and neck cancer", 
        "pagination": "2", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100302319"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13550-018-0357-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29322269"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13550-018-0357-9", 
          "https://app.dimensions.ai/details/publication/pub.1100302319"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_793.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13550-018-0357-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-018-0357-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-018-0357-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-018-0357-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-018-0357-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      101 URIs      78 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13550-018-0357-9 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 anzsrc-for:1112
    4 schema:author Nc6105fcbc42a4215b58249dd5c16582b
    5 schema:citation sg:pub.10.1007/s00259-012-2127-7
    6 sg:pub.10.1007/s00330-016-4284-8
    7 sg:pub.10.1007/s00330-017-4999-1
    8 sg:pub.10.1007/s12149-013-0737-1
    9 sg:pub.10.1007/s13139-010-0063-7
    10 sg:pub.10.1007/s13139-013-0252-2
    11 sg:pub.10.1007/s40134-014-0049-9
    12 sg:pub.10.1007/s40336-013-0012-4
    13 sg:pub.10.1038/sj.bjc.6600114
    14 sg:pub.10.1038/srep12242
    15 sg:pub.10.1186/1477-7819-5-140
    16 sg:pub.10.1186/1758-3284-2-15
    17 sg:pub.10.1186/s40644-016-0080-6
    18 sg:pub.10.1245/s10434-006-9189-3
    19 schema:datePublished 2018-01-10
    20 schema:datePublishedReg 2018-01-10
    21 schema:description BackgroundThe aim of this study was to determine the usefulness of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) parameters provided by simultaneous 18F-fluorodeoxyglucose (FDG) PET/MRI for the prediction of treatment failure in surgically resected head and neck cancer. We hypothesized that PET parameters corrected by tumor cellularity (combined PET/MRI parameters) could predict the prognosis. On regional PET, maximum standardized uptake value (SUVmax) was measured as metabolic parameters. In addition, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were checked as metabolo-volumetric parameters. Mean apparent diffusion coefficient (ADCmean) of tumor was evaluated as the MRI parameter on the ADC map. Ratios between metabolic/metabolo-volumetric parameters and ADC were calculated as combined PET/MRI parameters. PET, MRI, and combined PET/MRI parameters were compared with clinicopathologic parameters in terms of treatment failure.ResultsSeventy-two patients (mean age = 55.9 ± 14.6 year, M: F = 45: 27) who underwent simultaneous 18F-FDG PET/MRI before head and neck cancer surgery were retrospectively enrolled. Twenty-two patients (30.6%) showed tumor treatment failure after head and neck cancer surgery (mean treatment failure = 13.0 ± 7.0 months). In the univariate analysis, MTV (P = 0.044) and ratios between metabolo-volumetric parameters and ADC (MTV/ADCmean, P = 0.022; TLG/ADCmean, P = 0.044) demonstrated significance among 18F-FDG PET/MRI parameters. Lymphatic invasion (P = 0.044) and perineural invasion (P = 0.046) revealed significance among clinicopathologic parameters. In the multivariate analysis, MTV (P = 0.026), MTV/ADCmean (P = 0.011), and TLG/ADCmean (P = 0.002) with lymphatic invasion (P = 0.026, 0.026, and 0.044, respectively) showed significance.ConclusionsCombined PET/MRI parameters (PET metabolo-volumetric parameters corrected by tumor cellularity) could be effective predictors of tumor treatment failure after head and neck cancer surgery in addition to MTV and clinicopathologic parameter.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N1b92ab21a4c34fe5b9b9c27fc47d0e42
    25 Ne5b78d9bfa084715b5febb6c4e7c8227
    26 sg:journal.1045165
    27 schema:keywords ADC
    28 ADC maps
    29 ADCmean
    30 MRI
    31 MRI parameters
    32 PET parameters
    33 PET/MRI
    34 ResultsSeventy-two patients
    35 addition
    36 aim
    37 analysis
    38 apparent diffusion coefficient
    39 cancer
    40 cancer surgery
    41 cellularity
    42 clinicopathologic parameters
    43 coefficient
    44 combination
    45 diffusion coefficient
    46 effective predictor
    47 emission tomography
    48 failure
    49 glycolysis
    50 head
    51 imaging parameters
    52 invasion
    53 lesion glycolysis
    54 lymphatic invasion
    55 maps
    56 maximum standardized uptake value
    57 metabolic parameters
    58 metabolic tumor volume
    59 multivariate analysis
    60 neck cancer
    61 neck cancer surgery
    62 parameters
    63 patients
    64 perineural invasion
    65 positron emission tomography
    66 prediction
    67 predictors
    68 prognosis
    69 prognostic value
    70 ratio
    71 significance
    72 standardized uptake value
    73 study
    74 surgery
    75 terms
    76 tomography
    77 total lesion glycolysis
    78 treatment failure
    79 tumor cellularity
    80 tumor treatment failure
    81 tumor volume
    82 tumors
    83 univariate analysis
    84 uptake value
    85 usefulness
    86 values
    87 volume
    88 schema:name Prognostic value of simultaneous 18F-FDG PET/MRI using a combination of metabolo-volumetric parameters and apparent diffusion coefficient in treated head and neck cancer
    89 schema:pagination 2
    90 schema:productId N36277597f3b04126bcf6521672914304
    91 N4490a79655804baa9ad25f17019a6af5
    92 Nd9c8afe7394a46699746dba9a34591fa
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100302319
    94 https://doi.org/10.1186/s13550-018-0357-9
    95 schema:sdDatePublished 2022-09-02T16:03
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nb912eb4fd1d64e04b1dc9894bd04248f
    98 schema:url https://doi.org/10.1186/s13550-018-0357-9
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N18a06edb913b46b798e3660fdb2aed62 rdf:first sg:person.015617314175.88
    103 rdf:rest N3c02cf5ec31b478c9eac076612d15ab8
    104 N1b92ab21a4c34fe5b9b9c27fc47d0e42 schema:volumeNumber 8
    105 rdf:type schema:PublicationVolume
    106 N2a20e35170604fa2af5094bb0ed3d75f rdf:first sg:person.01343511335.32
    107 rdf:rest N3cdf481aec2d4bd5bd0ff5842df30d7a
    108 N36277597f3b04126bcf6521672914304 schema:name doi
    109 schema:value 10.1186/s13550-018-0357-9
    110 rdf:type schema:PropertyValue
    111 N3c02cf5ec31b478c9eac076612d15ab8 rdf:first sg:person.0751347234.39
    112 rdf:rest rdf:nil
    113 N3cdf481aec2d4bd5bd0ff5842df30d7a rdf:first sg:person.0761746266.86
    114 rdf:rest N18a06edb913b46b798e3660fdb2aed62
    115 N4490a79655804baa9ad25f17019a6af5 schema:name dimensions_id
    116 schema:value pub.1100302319
    117 rdf:type schema:PropertyValue
    118 N65a79ac3c24d4135802e40b520ecf791 rdf:first sg:person.01333472502.31
    119 rdf:rest Nd95c116b441347e1a55dc936d621cd23
    120 Nb912eb4fd1d64e04b1dc9894bd04248f schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 Nc6105fcbc42a4215b58249dd5c16582b rdf:first sg:person.01001337521.67
    123 rdf:rest N65a79ac3c24d4135802e40b520ecf791
    124 Nd95c116b441347e1a55dc936d621cd23 rdf:first sg:person.010434512657.07
    125 rdf:rest N2a20e35170604fa2af5094bb0ed3d75f
    126 Nd9c8afe7394a46699746dba9a34591fa schema:name pubmed_id
    127 schema:value 29322269
    128 rdf:type schema:PropertyValue
    129 Ne5b78d9bfa084715b5febb6c4e7c8227 schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Medical and Health Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Clinical Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Oncology and Carcinogenesis
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1045165 schema:issn 2191-219X
    141 schema:name EJNMMI Research
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.413967.e
    145 schema:familyName Kim
    146 schema:givenName Yong-il
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
    148 rdf:type schema:Person
    149 sg:person.010434512657.07 schema:affiliation grid-institutes:grid.412484.f
    150 schema:familyName Kang
    151 schema:givenName Seo Young
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434512657.07
    153 rdf:type schema:Person
    154 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
    155 schema:familyName Cheon
    156 schema:givenName Gi Jeong
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
    158 rdf:type schema:Person
    159 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
    160 schema:familyName Paeng
    161 schema:givenName Jin Chul
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
    163 rdf:type schema:Person
    164 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.412484.f
    165 schema:familyName Lee
    166 schema:givenName Dong Soo
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    168 rdf:type schema:Person
    169 sg:person.0751347234.39 schema:affiliation grid-institutes:grid.412484.f
    170 schema:familyName Chung
    171 schema:givenName June-Key
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751347234.39
    173 rdf:type schema:Person
    174 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.412484.f
    175 schema:familyName Kang
    176 schema:givenName Keon Wook
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
    178 rdf:type schema:Person
    179 sg:pub.10.1007/s00259-012-2127-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003945389
    180 https://doi.org/10.1007/s00259-012-2127-7
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s00330-016-4284-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046072055
    183 https://doi.org/10.1007/s00330-016-4284-8
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00330-017-4999-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091217846
    186 https://doi.org/10.1007/s00330-017-4999-1
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s12149-013-0737-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005241351
    189 https://doi.org/10.1007/s12149-013-0737-1
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s13139-010-0063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047786893
    192 https://doi.org/10.1007/s13139-010-0063-7
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s13139-013-0252-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039803046
    195 https://doi.org/10.1007/s13139-013-0252-2
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s40134-014-0049-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035437724
    198 https://doi.org/10.1007/s40134-014-0049-9
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s40336-013-0012-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035583904
    201 https://doi.org/10.1007/s40336-013-0012-4
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/sj.bjc.6600114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015841148
    204 https://doi.org/10.1038/sj.bjc.6600114
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/srep12242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024517924
    207 https://doi.org/10.1038/srep12242
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1186/1477-7819-5-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043121248
    210 https://doi.org/10.1186/1477-7819-5-140
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/1758-3284-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003684051
    213 https://doi.org/10.1186/1758-3284-2-15
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/s40644-016-0080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019011515
    216 https://doi.org/10.1186/s40644-016-0080-6
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1245/s10434-006-9189-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004490708
    219 https://doi.org/10.1245/s10434-006-9189-3
    220 rdf:type schema:CreativeWork
    221 grid-institutes:grid.31501.36 schema:alternateName Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea
    222 schema:name Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 03080, Seoul, Korea
    223 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
    224 rdf:type schema:Organization
    225 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
    226 schema:name Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
    227 rdf:type schema:Organization
    228 grid-institutes:grid.413967.e schema:alternateName Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
    229 schema:name Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
    230 Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
    231 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...