Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Tadaki Nakahara, Hiromitsu Daisaki, Yasushi Yamamoto, Takashi Iimori, Kazuyuki Miyagawa, Tomoya Okamoto, Yoshiki Owaki, Nobuhiro Yada, Koichi Sawada, Ryotaro Tokorodani, Masahiro Jinzaki

ABSTRACT

BACKGROUND: Although quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging. METHODS: The NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37 mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17 mm (DRO17 mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17 mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers' recommendation or the policies of their own departments) and after harmonization. RESULTS: RMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13 mm for Brightview XCT, SI of 160 and 3DGF of 3 pixels for Discovery NM/CT, SI of 60 and 3DGF of 2 pixels for Infinia, and SI of 140 and 3DGF of 15 mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization. CONCLUSIONS: Our proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT. More... »

PAGES

53

References to SciGraph publications

  • 2016-12. Longitudinal analysis of bone metabolism using SPECT/CT and 99mTc-diphosphono-propanedicarboxylic acid: comparison of visual and quantitative analysis in EJNMMI RESEARCH
  • 2016-03. Clinical impact of 99mTc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with 90Y-loaded microspheres in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-12. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases in BMC CANCER
  • 2015-12. Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time in EJNMMI RESEARCH
  • 2010-05. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 1.0 in ANNALS OF NUCLEAR MEDICINE
  • 2017-05. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis in ANNALS OF NUCLEAR MEDICINE
  • 2014-01. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-08. The EANM practice guidelines for bone scintigraphy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-04. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-12. Pre-therapeutic dosimetry of normal organs and tissues of 177Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-12. Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy in EJNMMI RESEARCH
  • 2013-07. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-12. Heterogeneity of intratumoral 111In-ibritumomab tiuxetan and 18F-FDG distribution in association with therapeutic response in radioimmunotherapy for B-cell non-Hodgkin’s lymphoma in EJNMMI RESEARCH
  • 2012-12. Quantitative capabilities of four state-of-the-art SPECT-CT cameras in EJNMMI RESEARCH
  • 2013-10. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-04. The diagnostic value of single-photon emission computed tomography/computed tomography for severe sacroiliac joint dysfunction in EUROPEAN SPINE JOURNAL
  • 2015-02. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13550-017-0300-5

    DOI

    http://dx.doi.org/10.1186/s13550-017-0300-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1086112349

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28639254


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Keio University", 
              "id": "https://www.grid.ac/institutes/grid.26091.3c", 
              "name": [
                "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakahara", 
            "givenName": "Tadaki", 
            "id": "sg:person.012370275373.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370275373.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gunma Prefectural College of Health Sciences", 
              "id": "https://www.grid.ac/institutes/grid.443584.a", 
              "name": [
                "Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, 371-0052, Maebashi, Gunma, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daisaki", 
            "givenName": "Hiromitsu", 
            "id": "sg:person.0704464201.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704464201.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shimane University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412567.3", 
              "name": [
                "Department of Radiology, Shimane University Hospital, 89-1 Enya-cho, 693-8501, Izumo, Shimane, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamamoto", 
            "givenName": "Yasushi", 
            "id": "sg:person.0660004370.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660004370.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411321.4", 
              "name": [
                "Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-8677, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iimori", 
            "givenName": "Takashi", 
            "id": "sg:person.01002241676.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002241676.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Kochi Medical Hospital, 2125-1 Ike, Kochi-shi, 781-8555, Kochi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miyagawa", 
            "givenName": "Kazuyuki", 
            "id": "sg:person.0610063523.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610063523.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Tsugaru General Hospital, 12-3 Iwaki-machi, Goshogawara-shi, 037-0074, Aomori, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okamoto", 
            "givenName": "Tomoya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Keio University", 
              "id": "https://www.grid.ac/institutes/grid.26091.3c", 
              "name": [
                "Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, 116-8551, Tokyo, Japan", 
                "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Owaki", 
            "givenName": "Yoshiki", 
            "id": "sg:person.012772725213.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772725213.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shimane University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412567.3", 
              "name": [
                "Department of Radiology, Shimane University Hospital, 89-1 Enya-cho, 693-8501, Izumo, Shimane, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yada", 
            "givenName": "Nobuhiro", 
            "id": "sg:person.01250576744.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250576744.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chiba University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.411321.4", 
              "name": [
                "Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-8677, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sawada", 
            "givenName": "Koichi", 
            "id": "sg:person.014365666213.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365666213.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Kochi Medical Hospital, 2125-1 Ike, Kochi-shi, 781-8555, Kochi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tokorodani", 
            "givenName": "Ryotaro", 
            "id": "sg:person.0656176723.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656176723.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Keio University", 
              "id": "https://www.grid.ac/institutes/grid.26091.3c", 
              "name": [
                "Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jinzaki", 
            "givenName": "Masahiro", 
            "id": "sg:person.01362623133.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623133.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13550-014-0058-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580608", 
              "https://doi.org/10.1186/s13550-014-0058-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-014-0058-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580608", 
              "https://doi.org/10.1186/s13550-014-0058-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.115.158626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002423959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-015-0093-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005379951", 
              "https://doi.org/10.1186/s13550-015-0093-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-015-0093-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005379951", 
              "https://doi.org/10.1186/s13550-015-0093-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-016-2176-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005516173", 
              "https://doi.org/10.1186/s12885-016-2176-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1464-410x.2012.11355.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005704539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3157-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006123172", 
              "https://doi.org/10.1007/s00259-015-3157-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3157-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006123172", 
              "https://doi.org/10.1007/s00259-015-3157-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eururo.2012.01.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007857845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-016-0217-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008024669", 
              "https://doi.org/10.1186/s13550-016-0217-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-016-0217-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008024669", 
              "https://doi.org/10.1186/s13550-016-0217-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2961-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008918527", 
              "https://doi.org/10.1007/s00259-014-2961-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1334-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009196400", 
              "https://doi.org/10.1007/s00259-009-1334-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1334-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009196400", 
              "https://doi.org/10.1007/s00259-009-1334-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-014-0078-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009576846", 
              "https://doi.org/10.1186/s13550-014-0078-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13550-014-0078-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009576846", 
              "https://doi.org/10.1186/s13550-014-0078-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2373041358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010515736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-010-0377-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012902574", 
              "https://doi.org/10.1007/s12149-010-0377-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-010-0377-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012902574", 
              "https://doi.org/10.1007/s12149-010-0377-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2391-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046039", 
              "https://doi.org/10.1007/s00259-013-2391-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2391-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016046039", 
              "https://doi.org/10.1007/s00259-013-2391-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3125-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016062300", 
              "https://doi.org/10.1007/s00259-015-3125-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2465-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016939976", 
              "https://doi.org/10.1007/s00259-013-2465-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.071571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017287941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2191-219x-2-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019373662", 
              "https://doi.org/10.1186/2191-219x-2-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2011.36.5791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020062832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3415-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026955940", 
              "https://doi.org/10.1007/s00259-016-3415-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3415-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026955940", 
              "https://doi.org/10.1007/s00259-016-3415-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.115.155358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027670556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0b013e328351d549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029006527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0b013e328351d549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029006527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/cco.0000000000000145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/cco.0000000000000145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.urolonc.2014.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035926155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00586-014-3375-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043491286", 
              "https://doi.org/10.1007/s00586-014-3375-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-013-2532-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043651256", 
              "https://doi.org/10.1007/s00259-013-2532-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.1999.17.3.948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074262179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075171681", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077264485", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1967/s002449910134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078937893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2015141262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079089431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2016152294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079252024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083295747", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-017-1158-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084034234", 
              "https://doi.org/10.1007/s12149-017-1158-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-017-1158-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084034234", 
              "https://doi.org/10.1007/s12149-017-1158-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-017-1158-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084034234", 
              "https://doi.org/10.1007/s12149-017-1158-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Although quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging.\nMETHODS: The NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37\u00a0mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17\u00a0mm (DRO17\u00a0mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17\u00a0mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers' recommendation or the policies of their own departments) and after harmonization.\nRESULTS: RMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13\u00a0mm for Brightview XCT, SI of 160 and 3DGF of 3\u00a0pixels for Discovery NM/CT, SI of 60 and 3DGF of 2\u00a0pixels for Infinia, and SI of 140 and 3DGF of 15\u00a0mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization.\nCONCLUSIONS: Our proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13550-017-0300-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045165", 
            "issn": [
              "2191-219X"
            ], 
            "name": "EJNMMI Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study", 
        "pagination": "53", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0fe02b2835e28947c832f885bcb52166db6be8f9a96cae99558d232f87c4c5b0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28639254"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101560946"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13550-017-0300-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1086112349"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13550-017-0300-5", 
          "https://app.dimensions.ai/details/publication/pub.1086112349"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13550-017-0300-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13550-017-0300-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13550-017-0300-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13550-017-0300-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13550-017-0300-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13550-017-0300-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N84356bb5e24f4feaa19a84b51303302b
    4 schema:citation sg:pub.10.1007/s00259-009-1334-3
    5 sg:pub.10.1007/s00259-013-2391-1
    6 sg:pub.10.1007/s00259-013-2465-0
    7 sg:pub.10.1007/s00259-013-2532-6
    8 sg:pub.10.1007/s00259-014-2961-x
    9 sg:pub.10.1007/s00259-015-3125-3
    10 sg:pub.10.1007/s00259-015-3157-8
    11 sg:pub.10.1007/s00259-016-3415-4
    12 sg:pub.10.1007/s00586-014-3375-y
    13 sg:pub.10.1007/s12149-010-0377-7
    14 sg:pub.10.1007/s12149-017-1158-3
    15 sg:pub.10.1186/2191-219x-2-45
    16 sg:pub.10.1186/s12885-016-2176-6
    17 sg:pub.10.1186/s13550-014-0058-y
    18 sg:pub.10.1186/s13550-014-0078-7
    19 sg:pub.10.1186/s13550-015-0093-3
    20 sg:pub.10.1186/s13550-016-0217-4
    21 https://app.dimensions.ai/details/publication/pub.1075171681
    22 https://app.dimensions.ai/details/publication/pub.1077264485
    23 https://app.dimensions.ai/details/publication/pub.1083295747
    24 https://doi.org/10.1016/j.eururo.2012.01.037
    25 https://doi.org/10.1016/j.urolonc.2014.08.006
    26 https://doi.org/10.1097/cco.0000000000000145
    27 https://doi.org/10.1097/mnm.0b013e328351d549
    28 https://doi.org/10.1111/j.1464-410x.2012.11355.x
    29 https://doi.org/10.1148/radiol.2015141262
    30 https://doi.org/10.1148/radiol.2016152294
    31 https://doi.org/10.1148/radiol.2373041358
    32 https://doi.org/10.1200/jco.1999.17.3.948
    33 https://doi.org/10.1200/jco.2011.36.5791
    34 https://doi.org/10.1967/s002449910134
    35 https://doi.org/10.2967/jnumed.109.071571
    36 https://doi.org/10.2967/jnumed.115.155358
    37 https://doi.org/10.2967/jnumed.115.158626
    38 schema:datePublished 2017-12
    39 schema:datePublishedReg 2017-12-01
    40 schema:description BACKGROUND: Although quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging. METHODS: The NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37 mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17 mm (DRO17 mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17 mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers' recommendation or the policies of their own departments) and after harmonization. RESULTS: RMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13 mm for Brightview XCT, SI of 160 and 3DGF of 3 pixels for Discovery NM/CT, SI of 60 and 3DGF of 2 pixels for Infinia, and SI of 140 and 3DGF of 15 mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization. CONCLUSIONS: Our proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N66b0be3e3f9e4b75a2de25286b4f5b2b
    45 Nd5e596e79aa64433b2d12a614eebf16c
    46 sg:journal.1045165
    47 schema:name Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study
    48 schema:pagination 53
    49 schema:productId N59af095573314a83ad9cf897c228b6e9
    50 N681ef5c4039d4ce68d53d9d25a2301b1
    51 N6d2ab61016e946b2a8555245fc032e26
    52 N783b10695b994ddbab54fe47240a00a6
    53 Ne46a75698f754722872a432332877b24
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112349
    55 https://doi.org/10.1186/s13550-017-0300-5
    56 schema:sdDatePublished 2019-04-11T10:03
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Ne9445ea34d884a8b9198c6974060158b
    59 schema:url https://link.springer.com/10.1186%2Fs13550-017-0300-5
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N03c714fd13b14cfcb2a1fa03079bff66 rdf:first sg:person.0610063523.07
    64 rdf:rest N9044546b8e804389ae795ce930cee91b
    65 N3d047d0e63dc49a682c2c5770197e8cd rdf:first sg:person.0656176723.25
    66 rdf:rest N6d9331b7527842139bd5e92829b4c138
    67 N59af095573314a83ad9cf897c228b6e9 schema:name readcube_id
    68 schema:value 0fe02b2835e28947c832f885bcb52166db6be8f9a96cae99558d232f87c4c5b0
    69 rdf:type schema:PropertyValue
    70 N66b0be3e3f9e4b75a2de25286b4f5b2b schema:volumeNumber 7
    71 rdf:type schema:PublicationVolume
    72 N66b21ea975da425f977cb00f9e3666cc schema:name Department of Radiology, Kochi Medical Hospital, 2125-1 Ike, Kochi-shi, 781-8555, Kochi, Japan
    73 rdf:type schema:Organization
    74 N681ef5c4039d4ce68d53d9d25a2301b1 schema:name nlm_unique_id
    75 schema:value 101560946
    76 rdf:type schema:PropertyValue
    77 N6d2ab61016e946b2a8555245fc032e26 schema:name pubmed_id
    78 schema:value 28639254
    79 rdf:type schema:PropertyValue
    80 N6d9331b7527842139bd5e92829b4c138 rdf:first sg:person.01362623133.24
    81 rdf:rest rdf:nil
    82 N7784d808611542f192527ee7ea1ecc61 rdf:first sg:person.012772725213.77
    83 rdf:rest Ne3d1bc9c202647d78722062fd8068887
    84 N783b10695b994ddbab54fe47240a00a6 schema:name dimensions_id
    85 schema:value pub.1086112349
    86 rdf:type schema:PropertyValue
    87 N84356bb5e24f4feaa19a84b51303302b rdf:first sg:person.012370275373.93
    88 rdf:rest Ne76a1f6d42484e92b213f84d9aa8bba5
    89 N875d618820964e37824018ca214edb91 rdf:first sg:person.014365666213.36
    90 rdf:rest N3d047d0e63dc49a682c2c5770197e8cd
    91 N9044546b8e804389ae795ce930cee91b rdf:first N90fa739016a24425876a143d721cc448
    92 rdf:rest N7784d808611542f192527ee7ea1ecc61
    93 N90fa739016a24425876a143d721cc448 schema:affiliation Ne4efcec03e274944a689143b90f43e34
    94 schema:familyName Okamoto
    95 schema:givenName Tomoya
    96 rdf:type schema:Person
    97 N98ac7402831d442fadec0b191e8234b9 schema:name Department of Radiology, Kochi Medical Hospital, 2125-1 Ike, Kochi-shi, 781-8555, Kochi, Japan
    98 rdf:type schema:Organization
    99 Nc1fecf4f0dac44b7beffa7e858d887de rdf:first sg:person.0660004370.50
    100 rdf:rest Nc31dabc437a445dd836509ade3c74a2c
    101 Nc31dabc437a445dd836509ade3c74a2c rdf:first sg:person.01002241676.30
    102 rdf:rest N03c714fd13b14cfcb2a1fa03079bff66
    103 Nd5e596e79aa64433b2d12a614eebf16c schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 Ne3d1bc9c202647d78722062fd8068887 rdf:first sg:person.01250576744.68
    106 rdf:rest N875d618820964e37824018ca214edb91
    107 Ne46a75698f754722872a432332877b24 schema:name doi
    108 schema:value 10.1186/s13550-017-0300-5
    109 rdf:type schema:PropertyValue
    110 Ne4efcec03e274944a689143b90f43e34 schema:name Department of Radiology, Tsugaru General Hospital, 12-3 Iwaki-machi, Goshogawara-shi, 037-0074, Aomori, Japan
    111 rdf:type schema:Organization
    112 Ne76a1f6d42484e92b213f84d9aa8bba5 rdf:first sg:person.0704464201.36
    113 rdf:rest Nc1fecf4f0dac44b7beffa7e858d887de
    114 Ne9445ea34d884a8b9198c6974060158b schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Information and Computing Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Artificial Intelligence and Image Processing
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1045165 schema:issn 2191-219X
    123 schema:name EJNMMI Research
    124 rdf:type schema:Periodical
    125 sg:person.01002241676.30 schema:affiliation https://www.grid.ac/institutes/grid.411321.4
    126 schema:familyName Iimori
    127 schema:givenName Takashi
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002241676.30
    129 rdf:type schema:Person
    130 sg:person.012370275373.93 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
    131 schema:familyName Nakahara
    132 schema:givenName Tadaki
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012370275373.93
    134 rdf:type schema:Person
    135 sg:person.01250576744.68 schema:affiliation https://www.grid.ac/institutes/grid.412567.3
    136 schema:familyName Yada
    137 schema:givenName Nobuhiro
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250576744.68
    139 rdf:type schema:Person
    140 sg:person.012772725213.77 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
    141 schema:familyName Owaki
    142 schema:givenName Yoshiki
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012772725213.77
    144 rdf:type schema:Person
    145 sg:person.01362623133.24 schema:affiliation https://www.grid.ac/institutes/grid.26091.3c
    146 schema:familyName Jinzaki
    147 schema:givenName Masahiro
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362623133.24
    149 rdf:type schema:Person
    150 sg:person.014365666213.36 schema:affiliation https://www.grid.ac/institutes/grid.411321.4
    151 schema:familyName Sawada
    152 schema:givenName Koichi
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365666213.36
    154 rdf:type schema:Person
    155 sg:person.0610063523.07 schema:affiliation N98ac7402831d442fadec0b191e8234b9
    156 schema:familyName Miyagawa
    157 schema:givenName Kazuyuki
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610063523.07
    159 rdf:type schema:Person
    160 sg:person.0656176723.25 schema:affiliation N66b21ea975da425f977cb00f9e3666cc
    161 schema:familyName Tokorodani
    162 schema:givenName Ryotaro
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656176723.25
    164 rdf:type schema:Person
    165 sg:person.0660004370.50 schema:affiliation https://www.grid.ac/institutes/grid.412567.3
    166 schema:familyName Yamamoto
    167 schema:givenName Yasushi
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660004370.50
    169 rdf:type schema:Person
    170 sg:person.0704464201.36 schema:affiliation https://www.grid.ac/institutes/grid.443584.a
    171 schema:familyName Daisaki
    172 schema:givenName Hiromitsu
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704464201.36
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s00259-009-1334-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009196400
    176 https://doi.org/10.1007/s00259-009-1334-3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00259-013-2391-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046039
    179 https://doi.org/10.1007/s00259-013-2391-1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00259-013-2465-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016939976
    182 https://doi.org/10.1007/s00259-013-2465-0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00259-013-2532-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043651256
    185 https://doi.org/10.1007/s00259-013-2532-6
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00259-014-2961-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918527
    188 https://doi.org/10.1007/s00259-014-2961-x
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00259-015-3125-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016062300
    191 https://doi.org/10.1007/s00259-015-3125-3
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00259-015-3157-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006123172
    194 https://doi.org/10.1007/s00259-015-3157-8
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00259-016-3415-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026955940
    197 https://doi.org/10.1007/s00259-016-3415-4
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00586-014-3375-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491286
    200 https://doi.org/10.1007/s00586-014-3375-y
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s12149-010-0377-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012902574
    203 https://doi.org/10.1007/s12149-010-0377-7
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s12149-017-1158-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084034234
    206 https://doi.org/10.1007/s12149-017-1158-3
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/2191-219x-2-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019373662
    209 https://doi.org/10.1186/2191-219x-2-45
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/s12885-016-2176-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005516173
    212 https://doi.org/10.1186/s12885-016-2176-6
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/s13550-014-0058-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580608
    215 https://doi.org/10.1186/s13550-014-0058-y
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/s13550-014-0078-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009576846
    218 https://doi.org/10.1186/s13550-014-0078-7
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/s13550-015-0093-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005379951
    221 https://doi.org/10.1186/s13550-015-0093-3
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s13550-016-0217-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008024669
    224 https://doi.org/10.1186/s13550-016-0217-4
    225 rdf:type schema:CreativeWork
    226 https://app.dimensions.ai/details/publication/pub.1075171681 schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1077264485 schema:CreativeWork
    228 https://app.dimensions.ai/details/publication/pub.1083295747 schema:CreativeWork
    229 https://doi.org/10.1016/j.eururo.2012.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007857845
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.urolonc.2014.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035926155
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1097/cco.0000000000000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707300
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1097/mnm.0b013e328351d549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029006527
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1111/j.1464-410x.2012.11355.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005704539
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1148/radiol.2015141262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079089431
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1148/radiol.2016152294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079252024
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1148/radiol.2373041358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010515736
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1200/jco.1999.17.3.948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074262179
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1200/jco.2011.36.5791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020062832
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1967/s002449910134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078937893
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.2967/jnumed.109.071571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017287941
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.2967/jnumed.115.155358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027670556
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.2967/jnumed.115.158626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002423959
    256 rdf:type schema:CreativeWork
    257 https://www.grid.ac/institutes/grid.26091.3c schema:alternateName Keio University
    258 schema:name Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, 116-8551, Tokyo, Japan
    259 Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
    260 rdf:type schema:Organization
    261 https://www.grid.ac/institutes/grid.411321.4 schema:alternateName Chiba University Hospital
    262 schema:name Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-8677, Chiba, Japan
    263 rdf:type schema:Organization
    264 https://www.grid.ac/institutes/grid.412567.3 schema:alternateName Shimane University Hospital
    265 schema:name Department of Radiology, Shimane University Hospital, 89-1 Enya-cho, 693-8501, Izumo, Shimane, Japan
    266 rdf:type schema:Organization
    267 https://www.grid.ac/institutes/grid.443584.a schema:alternateName Gunma Prefectural College of Health Sciences
    268 schema:name Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, 371-0052, Maebashi, Gunma, Japan
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...