A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Zsolt Vizi, István Z. Kiss, Joel C. Miller, Gergely Röst

ABSTRACT

For a recently derived pairwise model of network epidemics with non-Markovian recovery, we prove that under some mild technical conditions on the distribution of the infectious periods, smaller variance in the recovery time leads to higher reproduction number, and consequently to a larger epidemic outbreak, when the mean infectious period is fixed. We discuss how this result is related to various stochastic orderings of the distributions of infectious periods. The results are illustrated by a number of explicit stochastic simulations, suggesting that their validity goes beyond regular networks. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13362-019-0058-7

DOI

http://dx.doi.org/10.1186/s13362-019-0058-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111840851


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Szeged", 
          "id": "https://www.grid.ac/institutes/grid.9008.1", 
          "name": [
            "Bolyai Institute, University of Szeged, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vizi", 
        "givenName": "Zsolt", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sussex", 
          "id": "https://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiss", 
        "givenName": "Istv\u00e1n Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Disease Modeling, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Joel C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Bolyai Institute, University of Szeged, Szeged, Hungary", 
            "Mathematical Institute, University of Oxford, Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6st", 
        "givenName": "Gergely", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11538-005-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996991", 
          "https://doi.org/10.1007/s11538-005-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-005-9047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996991", 
          "https://doi.org/10.1007/s11538-005-9047-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2011.0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013768186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019678566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021340358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024746727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.016101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024746727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1999.0716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030804304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034165685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.87.925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0131398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037839922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34675-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037878151", 
          "https://doi.org/10.1007/978-0-387-34675-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34675-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037878151", 
          "https://doi.org/10.1007/978-0-387-34675-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-34675-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037878151", 
          "https://doi.org/10.1007/978-0-387-34675-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2006.3754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038928799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039188921", 
          "https://doi.org/10.1007/bf00178324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040009627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2014.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048110988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-012-9749-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048290556", 
          "https://doi.org/10.1007/s11538-012-9749-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2014.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051658678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-014-0801-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053123989", 
          "https://doi.org/10.1007/s00285-014-0801-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/mmnp/20149202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057046385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.078701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-aap773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1123-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084804574", 
          "https://doi.org/10.1007/s00285-017-1123-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1123-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084804574", 
          "https://doi.org/10.1007/s00285-017-1123-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085938323", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-50806-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085938323", 
          "https://doi.org/10.1007/978-3-319-50806-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-017-1155-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371322", 
          "https://doi.org/10.1007/s00285-017-1155-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789813141919_0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096104728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2017.0695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101151486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.052403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103957655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.052403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103957655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "For a recently derived pairwise model of network epidemics with non-Markovian recovery, we prove that under some mild technical conditions on the distribution of the infectious periods, smaller variance in the recovery time leads to higher reproduction number, and consequently to a larger epidemic outbreak, when the mean infectious period is fixed. We discuss how this result is related to various stochastic orderings of the distributions of infectious periods. The results are illustrated by a number of explicit stochastic simulations, suggesting that their validity goes beyond regular networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13362-019-0058-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136389", 
        "issn": [
          "2190-5983"
        ], 
        "name": "Journal of Mathematics in Industry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7eceba583f721e9691bee0bc9e8b4c46f17ee754c56fb9787c0f51399bb9fc3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13362-019-0058-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111840851"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13362-019-0058-7", 
      "https://app.dimensions.ai/details/publication/pub.1111840851"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114999_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13362-019-0058-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-019-0058-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-019-0058-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-019-0058-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-019-0058-7'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13362-019-0058-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1c1c44468d2843ea99bd84077ff440ec
4 schema:citation sg:pub.10.1007/978-0-387-34675-5
5 sg:pub.10.1007/978-3-319-50806-1
6 sg:pub.10.1007/bf00178324
7 sg:pub.10.1007/s00285-014-0801-z
8 sg:pub.10.1007/s00285-017-1123-8
9 sg:pub.10.1007/s00285-017-1155-0
10 sg:pub.10.1007/s11538-005-9047-7
11 sg:pub.10.1007/s11538-012-9749-6
12 https://app.dimensions.ai/details/publication/pub.1085938323
13 https://doi.org/10.1002/rsa.20575
14 https://doi.org/10.1016/j.jtbi.2014.02.037
15 https://doi.org/10.1016/j.mbs.2009.12.003
16 https://doi.org/10.1016/j.mbs.2014.08.012
17 https://doi.org/10.1051/mmnp/20149202
18 https://doi.org/10.1098/rsif.2011.0403
19 https://doi.org/10.1098/rspa.2017.0695
20 https://doi.org/10.1098/rspb.1999.0716
21 https://doi.org/10.1098/rspb.2006.3754
22 https://doi.org/10.1103/physreve.66.016128
23 https://doi.org/10.1103/physreve.76.010101
24 https://doi.org/10.1103/physreve.76.036113
25 https://doi.org/10.1103/physreve.82.016101
26 https://doi.org/10.1103/physreve.97.052403
27 https://doi.org/10.1103/physrevlett.115.078701
28 https://doi.org/10.1103/revmodphys.87.925
29 https://doi.org/10.1142/9789813141919_0003
30 https://doi.org/10.1214/11-aap773
31 https://doi.org/10.1371/journal.pone.0131398
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description For a recently derived pairwise model of network epidemics with non-Markovian recovery, we prove that under some mild technical conditions on the distribution of the infectious periods, smaller variance in the recovery time leads to higher reproduction number, and consequently to a larger epidemic outbreak, when the mean infectious period is fixed. We discuss how this result is related to various stochastic orderings of the distributions of infectious periods. The results are illustrated by a number of explicit stochastic simulations, suggesting that their validity goes beyond regular networks.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nb49d9cbda9554e48b93cf2ef1665f34e
39 Nea0239b022774ce1926a3bfd74140f79
40 sg:journal.1136389
41 schema:name A monotonic relationship between the variability of the infectious period and final size in pairwise epidemic modelling
42 schema:pagination 1
43 schema:productId N06e16c49d92f4761ba25d6760c9d2bbe
44 N2033968938ca4da0b99f98743b9b7312
45 Nbb74b45e74b3472ba378525599b29864
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840851
47 https://doi.org/10.1186/s13362-019-0058-7
48 schema:sdDatePublished 2019-04-11T09:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nf8e3d97d51bd4c75bcaa663a9e79269f
51 schema:url https://link.springer.com/10.1186%2Fs13362-019-0058-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N01778491840e4434b003a88437aa059f schema:name Institute for Disease Modeling, Bellevue, USA
56 rdf:type schema:Organization
57 N06e16c49d92f4761ba25d6760c9d2bbe schema:name doi
58 schema:value 10.1186/s13362-019-0058-7
59 rdf:type schema:PropertyValue
60 N0f81f4d1775a42f1a49f501a0ffc192a schema:affiliation https://www.grid.ac/institutes/grid.12082.39
61 schema:familyName Kiss
62 schema:givenName István Z.
63 rdf:type schema:Person
64 N1c1c44468d2843ea99bd84077ff440ec rdf:first N7021dea427494d4b9cb6edd3c2d5824c
65 rdf:rest Nf2994f14704d468692d19f0b52ea3c02
66 N2033968938ca4da0b99f98743b9b7312 schema:name readcube_id
67 schema:value d7eceba583f721e9691bee0bc9e8b4c46f17ee754c56fb9787c0f51399bb9fc3
68 rdf:type schema:PropertyValue
69 N5082abdb3e344f3cbd8e11139e1beee4 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
70 schema:familyName Röst
71 schema:givenName Gergely
72 rdf:type schema:Person
73 N7021dea427494d4b9cb6edd3c2d5824c schema:affiliation https://www.grid.ac/institutes/grid.9008.1
74 schema:familyName Vizi
75 schema:givenName Zsolt
76 rdf:type schema:Person
77 N7955073cd30a4b7d975965c8bc9f2988 rdf:first Nce9df3037b56406aa31c707372cfc8a7
78 rdf:rest Nef269b49901f48458c09c693a4b4652c
79 Nb49d9cbda9554e48b93cf2ef1665f34e schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 Nbb74b45e74b3472ba378525599b29864 schema:name dimensions_id
82 schema:value pub.1111840851
83 rdf:type schema:PropertyValue
84 Nce9df3037b56406aa31c707372cfc8a7 schema:affiliation N01778491840e4434b003a88437aa059f
85 schema:familyName Miller
86 schema:givenName Joel C.
87 rdf:type schema:Person
88 Nea0239b022774ce1926a3bfd74140f79 schema:volumeNumber 9
89 rdf:type schema:PublicationVolume
90 Nef269b49901f48458c09c693a4b4652c rdf:first N5082abdb3e344f3cbd8e11139e1beee4
91 rdf:rest rdf:nil
92 Nf2994f14704d468692d19f0b52ea3c02 rdf:first N0f81f4d1775a42f1a49f501a0ffc192a
93 rdf:rest N7955073cd30a4b7d975965c8bc9f2988
94 Nf8e3d97d51bd4c75bcaa663a9e79269f schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
100 schema:name Statistics
101 rdf:type schema:DefinedTerm
102 sg:journal.1136389 schema:issn 2190-5983
103 schema:name Journal of Mathematics in Industry
104 rdf:type schema:Periodical
105 sg:pub.10.1007/978-0-387-34675-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037878151
106 https://doi.org/10.1007/978-0-387-34675-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-319-50806-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085938323
109 https://doi.org/10.1007/978-3-319-50806-1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00178324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188921
112 https://doi.org/10.1007/bf00178324
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00285-014-0801-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053123989
115 https://doi.org/10.1007/s00285-014-0801-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00285-017-1123-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084804574
118 https://doi.org/10.1007/s00285-017-1123-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00285-017-1155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371322
121 https://doi.org/10.1007/s00285-017-1155-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11538-005-9047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996991
124 https://doi.org/10.1007/s11538-005-9047-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11538-012-9749-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048290556
127 https://doi.org/10.1007/s11538-012-9749-6
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1085938323 schema:CreativeWork
130 https://doi.org/10.1002/rsa.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678566
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jtbi.2014.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051658678
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.mbs.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021340358
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.mbs.2014.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048110988
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1051/mmnp/20149202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057046385
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1098/rsif.2011.0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013768186
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1098/rspa.2017.0695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101151486
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1098/rspb.1999.0716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030804304
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1098/rspb.2006.3754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038928799
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreve.66.016128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023034919
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.76.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034165685
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreve.76.036113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040009627
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.82.016101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746727
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.97.052403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103957655
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.115.078701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763954
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/revmodphys.87.925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034261529
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1142/9789813141919_0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096104728
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1214/11-aap773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392003
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1371/journal.pone.0131398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037839922
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.12082.39 schema:alternateName University of Sussex
169 schema:name School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer, United Kingdom
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
172 schema:name Bolyai Institute, University of Szeged, Szeged, Hungary
173 Mathematical Institute, University of Oxford, Oxford, United Kingdom
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.9008.1 schema:alternateName University of Szeged
176 schema:name Bolyai Institute, University of Szeged, Szeged, Hungary
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...