On impedance conditions for circular multiperforated acoustic liners View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Kersten Schmidt, Adrien Semin, Anastasia Thöns-Zueva, Friedrich Bake

ABSTRACT

The acoustic damping in gas turbines and aero-engines relies to a great extent on acoustic liners that consists of a cavity and a perforated face sheet. The prediction of the impedance of the liners by direct numerical simulation is nowadays not feasible due to the hundreds to thousands repetitions of tiny holes. We introduce a procedure to numerically obtain the Rayleigh conductivity for acoustic liners for viscous gases at rest, and with it define the acoustic impedance of the perforated sheet. The proposed method decouples the effects that are dominant on different scales: (a) viscous and incompressible flow at the scale of one hole, (b) inviscid and incompressible flow at the scale of the hole pattern, and (c) inviscid and compressible flow at the scale of the wave-length. With the method of matched asymptotic expansions we couple the different scales and eventually obtain effective impedance conditions on the macroscopic scale. For this the effective Rayleigh conductivity results by numerical solution of an instationary Stokes problem in frequency domain around one hole with prescribed pressure at infinite distance to the aperture. It depends on hole shape, frequency, mean density and viscosity divided by the area of the periodicity cell. This enables us to estimate dissipation losses and transmission properties, that we compare with acoustic measurements in a duct acoustic test rig with a circular cross-section by the German Aerospace Center in Berlin. A precise and reasonable definition of an effective Rayleigh conductivity at the scale of one hole is proposed and impedance conditions for the macroscopic pressure or velocity are derived in a systematic procedure. The comparison with experiments show that the derived impedance conditions give a good prediction of the dissipation losses. More... »

PAGES

15

References to SciGraph publications

  • 2018-03-21. Simulation of Reflection and Transmission Properties of Multiperforated Acoustic Liners in PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2016
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13362-018-0057-0

    DOI

    http://dx.doi.org/10.1186/s13362-018-0057-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110754993


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Fachbereich Mathematik, AG Numerik und Wissenschaftliches Rechnen, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Kersten", 
            "id": "sg:person.015056504245.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015056504245.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Fachbereich Mathematik, AG Numerik und Wissenschaftliches Rechnen, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semin", 
            "givenName": "Adrien", 
            "id": "sg:person.012513512331.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012513512331.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Berlin", 
              "id": "https://www.grid.ac/institutes/grid.6734.6", 
              "name": [
                "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Th\u00f6ns-Zueva", 
            "givenName": "Anastasia", 
            "id": "sg:person.012551272032.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551272032.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German Aerospace Center", 
              "id": "https://www.grid.ac/institutes/grid.7551.6", 
              "name": [
                "German Aerospace Center, Institute of Propulsion Technology, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bake", 
            "givenName": "Friedrich", 
            "id": "sg:person.012321613175.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012321613175.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-247x(82)90133-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005602800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-1982-0669632-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007874865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0077-1554-08-00173-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016960447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-96-00781-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024079146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mma.3755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027755325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/asy-151350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032437467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(71)90381-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035764094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(71)90381-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035764094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.18682100602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042387152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.5.7.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043890132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rstl.1871.0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047142210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-460x(73)80125-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053595061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/proc/201237005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057053197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.381537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062332832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/120867123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062869152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218202514500080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062963551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsv.2017.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085058285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.2017.0708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101264061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-63082-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101647540", 
              "https://doi.org/10.1007/978-3-319-63082-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-63082-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101647540", 
              "https://doi.org/10.1007/978-3-319-63082-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/m2an/2017030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103074516"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "The acoustic damping in gas turbines and aero-engines relies to a great extent on acoustic liners that consists of a cavity and a perforated face sheet. The prediction of the impedance of the liners by direct numerical simulation is nowadays not feasible due to the hundreds to thousands repetitions of tiny holes. We introduce a procedure to numerically obtain the Rayleigh conductivity for acoustic liners for viscous gases at rest, and with it define the acoustic impedance of the perforated sheet. The proposed method decouples the effects that are dominant on different scales: (a) viscous and incompressible flow at the scale of one hole, (b) inviscid and incompressible flow at the scale of the hole pattern, and (c) inviscid and compressible flow at the scale of the wave-length. With the method of matched asymptotic expansions we couple the different scales and eventually obtain effective impedance conditions on the macroscopic scale. For this the effective Rayleigh conductivity results by numerical solution of an instationary Stokes problem in frequency domain around one hole with prescribed pressure at infinite distance to the aperture. It depends on hole shape, frequency, mean density and viscosity divided by the area of the periodicity cell. This enables us to estimate dissipation losses and transmission properties, that we compare with acoustic measurements in a duct acoustic test rig with a circular cross-section by the German Aerospace Center in Berlin. A precise and reasonable definition of an effective Rayleigh conductivity at the scale of one hole is proposed and impedance conditions for the macroscopic pressure or velocity are derived in a systematic procedure. The comparison with experiments show that the derived impedance conditions give a good prediction of the dissipation losses.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13362-018-0057-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136389", 
            "issn": [
              "2190-5983"
            ], 
            "name": "Journal of Mathematics in Industry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "On impedance conditions for circular multiperforated acoustic liners", 
        "pagination": "15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8d61fa483a0006c3525e1f99a14870a58736da99b4e7d4fb12ab3b4b39fbb85"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13362-018-0057-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110754993"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13362-018-0057-0", 
          "https://app.dimensions.ai/details/publication/pub.1110754993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000298_0000000298/records_26534_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13362-018-0057-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0057-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0057-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0057-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0057-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13362-018-0057-0 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N78f381f6da9646c5a6f282cd121334f1
    4 schema:citation sg:pub.10.1007/978-3-319-63082-3_9
    5 https://doi.org/10.1002/andp.18682100602
    6 https://doi.org/10.1002/mma.3755
    7 https://doi.org/10.1016/0022-247x(82)90133-0
    8 https://doi.org/10.1016/0022-460x(71)90381-6
    9 https://doi.org/10.1016/j.jsv.2017.04.005
    10 https://doi.org/10.1016/s0022-460x(73)80125-7
    11 https://doi.org/10.1051/m2an/2017030
    12 https://doi.org/10.1051/proc/201237005
    13 https://doi.org/10.1073/pnas.5.7.275
    14 https://doi.org/10.1090/s0025-5718-1982-0669632-7
    15 https://doi.org/10.1090/s0025-5718-96-00781-8
    16 https://doi.org/10.1090/s0077-1554-08-00173-8
    17 https://doi.org/10.1098/rspa.2017.0708
    18 https://doi.org/10.1098/rstl.1871.0006
    19 https://doi.org/10.1121/1.381537
    20 https://doi.org/10.1137/120867123
    21 https://doi.org/10.1142/s0218202514500080
    22 https://doi.org/10.3233/asy-151350
    23 schema:datePublished 2018-12
    24 schema:datePublishedReg 2018-12-01
    25 schema:description The acoustic damping in gas turbines and aero-engines relies to a great extent on acoustic liners that consists of a cavity and a perforated face sheet. The prediction of the impedance of the liners by direct numerical simulation is nowadays not feasible due to the hundreds to thousands repetitions of tiny holes. We introduce a procedure to numerically obtain the Rayleigh conductivity for acoustic liners for viscous gases at rest, and with it define the acoustic impedance of the perforated sheet. The proposed method decouples the effects that are dominant on different scales: (a) viscous and incompressible flow at the scale of one hole, (b) inviscid and incompressible flow at the scale of the hole pattern, and (c) inviscid and compressible flow at the scale of the wave-length. With the method of matched asymptotic expansions we couple the different scales and eventually obtain effective impedance conditions on the macroscopic scale. For this the effective Rayleigh conductivity results by numerical solution of an instationary Stokes problem in frequency domain around one hole with prescribed pressure at infinite distance to the aperture. It depends on hole shape, frequency, mean density and viscosity divided by the area of the periodicity cell. This enables us to estimate dissipation losses and transmission properties, that we compare with acoustic measurements in a duct acoustic test rig with a circular cross-section by the German Aerospace Center in Berlin. A precise and reasonable definition of an effective Rayleigh conductivity at the scale of one hole is proposed and impedance conditions for the macroscopic pressure or velocity are derived in a systematic procedure. The comparison with experiments show that the derived impedance conditions give a good prediction of the dissipation losses.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N03807c5a650442cf9777e3f9dbf48045
    30 Nc8949fe0786b42feb0aac3f2b333506f
    31 sg:journal.1136389
    32 schema:name On impedance conditions for circular multiperforated acoustic liners
    33 schema:pagination 15
    34 schema:productId N4766a985f2c14a649a4b43595bcde2a4
    35 Nb5bb9f452d4a4bb782264dcfc2870087
    36 Nb8625cc344254d3fa72c718e42525876
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110754993
    38 https://doi.org/10.1186/s13362-018-0057-0
    39 schema:sdDatePublished 2019-04-11T08:25
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Ne923dd24211b403cbc8ef206a125c156
    42 schema:url https://link.springer.com/10.1186%2Fs13362-018-0057-0
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N03807c5a650442cf9777e3f9dbf48045 schema:volumeNumber 8
    47 rdf:type schema:PublicationVolume
    48 N4766a985f2c14a649a4b43595bcde2a4 schema:name dimensions_id
    49 schema:value pub.1110754993
    50 rdf:type schema:PropertyValue
    51 N4c82c6a374cd496589408c23c830faf7 rdf:first sg:person.012513512331.59
    52 rdf:rest N6a825dea21714f539d94c68bccb41577
    53 N6a825dea21714f539d94c68bccb41577 rdf:first sg:person.012551272032.96
    54 rdf:rest Ne0e5a3e3eee746c38ae6cd02018bcf0b
    55 N78f381f6da9646c5a6f282cd121334f1 rdf:first sg:person.015056504245.04
    56 rdf:rest N4c82c6a374cd496589408c23c830faf7
    57 Nb5bb9f452d4a4bb782264dcfc2870087 schema:name doi
    58 schema:value 10.1186/s13362-018-0057-0
    59 rdf:type schema:PropertyValue
    60 Nb8625cc344254d3fa72c718e42525876 schema:name readcube_id
    61 schema:value b8d61fa483a0006c3525e1f99a14870a58736da99b4e7d4fb12ab3b4b39fbb85
    62 rdf:type schema:PropertyValue
    63 Nc8949fe0786b42feb0aac3f2b333506f schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 Ne0e5a3e3eee746c38ae6cd02018bcf0b rdf:first sg:person.012321613175.97
    66 rdf:rest rdf:nil
    67 Ne923dd24211b403cbc8ef206a125c156 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Interdisciplinary Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136389 schema:issn 2190-5983
    76 schema:name Journal of Mathematics in Industry
    77 rdf:type schema:Periodical
    78 sg:person.012321613175.97 schema:affiliation https://www.grid.ac/institutes/grid.7551.6
    79 schema:familyName Bake
    80 schema:givenName Friedrich
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012321613175.97
    82 rdf:type schema:Person
    83 sg:person.012513512331.59 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    84 schema:familyName Semin
    85 schema:givenName Adrien
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012513512331.59
    87 rdf:type schema:Person
    88 sg:person.012551272032.96 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
    89 schema:familyName Thöns-Zueva
    90 schema:givenName Anastasia
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551272032.96
    92 rdf:type schema:Person
    93 sg:person.015056504245.04 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    94 schema:familyName Schmidt
    95 schema:givenName Kersten
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015056504245.04
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-3-319-63082-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101647540
    99 https://doi.org/10.1007/978-3-319-63082-3_9
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1002/andp.18682100602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042387152
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1002/mma.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027755325
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0022-247x(82)90133-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005602800
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0022-460x(71)90381-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035764094
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.jsv.2017.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085058285
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0022-460x(73)80125-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053595061
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1051/m2an/2017030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103074516
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1051/proc/201237005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057053197
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1073/pnas.5.7.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043890132
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1090/s0025-5718-1982-0669632-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874865
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1090/s0025-5718-96-00781-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024079146
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1090/s0077-1554-08-00173-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016960447
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1098/rspa.2017.0708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101264061
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1098/rstl.1871.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047142210
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1121/1.381537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062332832
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1137/120867123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869152
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/s0218202514500080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963551
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.3233/asy-151350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032437467
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
    138 schema:name Fachbereich Mathematik, AG Numerik und Wissenschaftliches Rechnen, Technische Universität Darmstadt, Darmstadt, Germany
    139 rdf:type schema:Organization
    140 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
    141 schema:name Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
    142 rdf:type schema:Organization
    143 https://www.grid.ac/institutes/grid.7551.6 schema:alternateName German Aerospace Center
    144 schema:name German Aerospace Center, Institute of Propulsion Technology, Berlin, Germany
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...