Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Benjamin Ivorra, Miriam R. Ferrández, María Crespo, Juana L. Redondo, Pilar M. Ortigosa, Juan G. Santiago, Ángel M. Ramos

ABSTRACT

In this work, we consider a microfluidic mixer that uses hydrodynamic diffusion stream to induce the beginning of the folding process of a certain protein. To perform these molecular changes, the concentration of the denaturant, which is introduced into the mixer together with the protein, has to be diminished until a given value in a short period of time, known as mixing time. In this context, this article is devoted to optimize the design of the mixer, focusing on its shape and its flow parameters with the aim of minimizing its mixing time. First, we describe the involved physical phenomena through a mathematical model that allows us to obtain the mixing time for a considered device. Then, we formulate an optimization problem considering the mixing time as the objective function and detailing the design parameters related to the shape and the flow of the mixer. For dealing with this problem, we propose an enhanced optimization algorithm based on the hybridization of two techniques: a genetic algorithm as a core method and a multi-layer line search methodology based on the secant, which aims to improve the initialization of the core method. More precisely, in our hybrid approach, the core optimization is implemented as a sub-problem to be solved at each iteration of the multi-layer algorithm starting from the initial conditions that it provides. Before applying it to the mixer design problem, we validate this methodology by considering a set of benchmark problems and, then, compare its results to those obtained with other classical global optimization methods. As shown in the comparison, for the majority of those problems, our methodology needs fewer evaluations of the objective function, has higher success rates and is more accurate than the other considered algorithms. For those reasons, it has been selected for solving the computationally expensive problem of optimizing the mixer design. The obtained optimized device shows a great reduction in its mixing time with respect to the state-of-the-art mixers. More... »

PAGES

4

References to SciGraph publications

  • 1999. Preventing Premature Convergence to Local Optima in Genetic Algorithms via Random Offspring Generation in MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS
  • 2008. Partial Differential Equations, Modeling and Numerical Simulation in NONE
  • 1983-07. Global optimization by controlled random search in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2007. Hybrid Line Search for Multiobjective Optimization in HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS
  • 1999. Handbook of Test Problems in Local and Global Optimization in NONE
  • 2014-09. Design of code division multiple access filters based on sampled fiber Bragg grating by using global optimization algorithms in OPTIMIZATION AND ENGINEERING
  • 2011-11. EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems in SOFT COMPUTING
  • 2018-02. Application of the Laminar Navier–Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics in JOURNAL OF SCIENTIFIC COMPUTING
  • 2009-03. Optimization strategies in credit portfolio management in JOURNAL OF GLOBAL OPTIMIZATION
  • 2007-12. Semideterministic Global Optimization Method: Application to a Control Problem of the Burgers Equation in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2012-01. A Variance-Expected Compliance Model for Structural Optimization in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2001-11. On success rates for controlled random search in JOURNAL OF GLOBAL OPTIMIZATION
  • 1997-12. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces in JOURNAL OF GLOBAL OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13362-018-0046-3

    DOI

    http://dx.doi.org/10.1186/s13362-018-0046-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104607513


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Complutense University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.4795.f", 
              "name": [
                "Instituto de Matem\u00e1tica Interdisciplinar (IMI), Grupo MOMAT, Dept. de An\u00e1lisis Matem\u00e1tico \u2013 Matem\u00e1tica Aplicada, Universidad Complutense de Madrid, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ivorra", 
            "givenName": "Benjamin", 
            "id": "sg:person.01013551527.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013551527.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Almer\u00eda", 
              "id": "https://www.grid.ac/institutes/grid.28020.38", 
              "name": [
                "Dept. de Arquitectura de Computadores y Electr\u00f3nica, Universidad de Almeria, ceiA3, La Ca\u00f1ada de San Urbano, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ferr\u00e1ndez", 
            "givenName": "Miriam R.", 
            "id": "sg:person.07370424716.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07370424716.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Juan Carlos University", 
              "id": "https://www.grid.ac/institutes/grid.28479.30", 
              "name": [
                "Departamento de Matem\u00e1tica Aplicada, Ciencia e Ingenier\u00eda de los Materiales y Tecnolog\u00eda Electr\u00f3nica, Universidad Rey Juan Carlos, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crespo", 
            "givenName": "Mar\u00eda", 
            "id": "sg:person.07360456227.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07360456227.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Almer\u00eda", 
              "id": "https://www.grid.ac/institutes/grid.28020.38", 
              "name": [
                "Dept. de Arquitectura de Computadores y Electr\u00f3nica, Universidad de Almeria, ceiA3, La Ca\u00f1ada de San Urbano, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redondo", 
            "givenName": "Juana L.", 
            "id": "sg:person.014263353617.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263353617.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Almer\u00eda", 
              "id": "https://www.grid.ac/institutes/grid.28020.38", 
              "name": [
                "Dept. de Arquitectura de Computadores y Electr\u00f3nica, Universidad de Almeria, ceiA3, La Ca\u00f1ada de San Urbano, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ortigosa", 
            "givenName": "Pilar M.", 
            "id": "sg:person.014637622765.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637622765.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Mechanical Engineering Dept., Stanford University, Stanford, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santiago", 
            "givenName": "Juan G.", 
            "id": "sg:person.01156160063.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156160063.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Complutense University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.4795.f", 
              "name": [
                "Instituto de Matem\u00e1tica Interdisciplinar (IMI), Grupo MOMAT, Dept. de An\u00e1lisis Matem\u00e1tico \u2013 Matem\u00e1tica Aplicada, Universidad Complutense de Madrid, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramos", 
            "givenName": "\u00c1ngel M.", 
            "id": "sg:person.01254270307.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254270307.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3495(96)79538-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000069098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-011-9874-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003938380", 
              "https://doi.org/10.1007/s10957-011-9874-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2013.12.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004299143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48765-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011141970", 
              "https://doi.org/10.1007/978-3-540-48765-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48765-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011141970", 
              "https://doi.org/10.1007/978-3-540-48765-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4939006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012100409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008202821328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012950914", 
              "https://doi.org/10.1023/a:1008202821328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2003.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013052757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2003.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013052757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00500-010-0651-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013485124", 
              "https://doi.org/10.1007/s00500-010-0651-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2004.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014293577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2004.05.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016050979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(53)80001-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016940601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2010.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017772136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-007-9221-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017885094", 
              "https://doi.org/10.1007/s10898-007-9221-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mcm.2011.02.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018935784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.2209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020262789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2012.05.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021808423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75444-2_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024104405", 
              "https://doi.org/10.1007/978-3-540-75444-2_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026739118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nme.1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026739118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027865316", 
              "https://doi.org/10.1007/bf00933504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035628236", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3040-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035628236", 
              "https://doi.org/10.1007/978-1-4757-3040-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3040-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035628236", 
              "https://doi.org/10.1007/978-1-4757-3040-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012387510553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036611968", 
              "https://doi.org/10.1023/a:1012387510553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cma.2015.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036702215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-007-9251-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038000917", 
              "https://doi.org/10.1007/s10957-007-9251-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11081-013-9212-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046282052", 
              "https://doi.org/10.1007/s11081-013-9212-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8758-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048656916", 
              "https://doi.org/10.1007/978-1-4020-8758-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8758-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048656916", 
              "https://doi.org/10.1007/978-1-4020-8758-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10618560600771758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052588309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac048661s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054996200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac048661s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054996200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051903j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051903j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac070528n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054999370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac070528n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054999370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4793612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058070227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijcse.2006.012769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067444639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-017-0489-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090291496", 
              "https://doi.org/10.1007/s10915-017-0489-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10915-017-0489-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090291496", 
              "https://doi.org/10.1007/s10915-017-0489-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isda.2009.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094999890"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In this work, we consider a microfluidic mixer that uses hydrodynamic diffusion stream to induce the beginning of the folding process of a certain protein. To perform these molecular changes, the concentration of the denaturant, which is introduced into the mixer together with the protein, has to be diminished until a given value in a short period of time, known as mixing time. In this context, this article is devoted to optimize the design of the mixer, focusing on its shape and its flow parameters with the aim of minimizing its mixing time. First, we describe the involved physical phenomena through a mathematical model that allows us to obtain the mixing time for a considered device. Then, we formulate an optimization problem considering the mixing time as the objective function and detailing the design parameters related to the shape and the flow of the mixer. For dealing with this problem, we propose an enhanced optimization algorithm based on the hybridization of two techniques: a genetic algorithm as a core method and a multi-layer line search methodology based on the secant, which aims to improve the initialization of the core method. More precisely, in our hybrid approach, the core optimization is implemented as a sub-problem to be solved at each iteration of the multi-layer algorithm starting from the initial conditions that it provides. Before applying it to the mixer design problem, we validate this methodology by considering a set of benchmark problems and, then, compare its results to those obtained with other classical global optimization methods. As shown in the comparison, for the majority of those problems, our methodology needs fewer evaluations of the objective function, has higher success rates and is more accurate than the other considered algorithms. For those reasons, it has been selected for solving the computationally expensive problem of optimizing the mixer design. The obtained optimized device shows a great reduction in its mixing time with respect to the state-of-the-art mixers.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13362-018-0046-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136389", 
            "issn": [
              "2190-5983"
            ], 
            "name": "Journal of Mathematics in Industry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding", 
        "pagination": "4", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d61ab9f038f735fefaa5fc7a995467860ce34af28c905c178ba8a581ff2d2469"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13362-018-0046-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104607513"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13362-018-0046-3", 
          "https://app.dimensions.ai/details/publication/pub.1104607513"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13362-018-0046-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0046-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0046-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0046-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0046-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13362-018-0046-3 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N6612f3f5ee5648b88f01c430634cebfd
    4 schema:citation sg:pub.10.1007/978-1-4020-8758-5
    5 sg:pub.10.1007/978-1-4757-3040-1
    6 sg:pub.10.1007/978-3-540-48765-4_16
    7 sg:pub.10.1007/978-3-540-75444-2_12
    8 sg:pub.10.1007/bf00933504
    9 sg:pub.10.1007/s00500-010-0651-6
    10 sg:pub.10.1007/s10898-007-9221-6
    11 sg:pub.10.1007/s10915-017-0489-5
    12 sg:pub.10.1007/s10957-007-9251-8
    13 sg:pub.10.1007/s10957-011-9874-7
    14 sg:pub.10.1007/s11081-013-9212-z
    15 sg:pub.10.1023/a:1008202821328
    16 sg:pub.10.1023/a:1012387510553
    17 https://app.dimensions.ai/details/publication/pub.1035628236
    18 https://doi.org/10.1002/nme.1562
    19 https://doi.org/10.1002/nme.2209
    20 https://doi.org/10.1016/0009-2509(53)80001-1
    21 https://doi.org/10.1016/j.cma.2015.02.003
    22 https://doi.org/10.1016/j.compfluid.2003.06.007
    23 https://doi.org/10.1016/j.ejor.2004.03.012
    24 https://doi.org/10.1016/j.ejor.2004.05.033
    25 https://doi.org/10.1016/j.ejor.2010.02.009
    26 https://doi.org/10.1016/j.ejor.2012.05.029
    27 https://doi.org/10.1016/j.ejor.2013.12.041
    28 https://doi.org/10.1016/j.mcm.2011.02.037
    29 https://doi.org/10.1016/s0006-3495(96)79538-3
    30 https://doi.org/10.1021/ac048661s
    31 https://doi.org/10.1021/ac051903j
    32 https://doi.org/10.1021/ac070528n
    33 https://doi.org/10.1063/1.4793612
    34 https://doi.org/10.1063/1.4939006
    35 https://doi.org/10.1080/10618560600771758
    36 https://doi.org/10.1103/physrevlett.80.3863
    37 https://doi.org/10.1109/isda.2009.191
    38 https://doi.org/10.1504/ijcse.2006.012769
    39 schema:datePublished 2018-12
    40 schema:datePublishedReg 2018-12-01
    41 schema:description In this work, we consider a microfluidic mixer that uses hydrodynamic diffusion stream to induce the beginning of the folding process of a certain protein. To perform these molecular changes, the concentration of the denaturant, which is introduced into the mixer together with the protein, has to be diminished until a given value in a short period of time, known as mixing time. In this context, this article is devoted to optimize the design of the mixer, focusing on its shape and its flow parameters with the aim of minimizing its mixing time. First, we describe the involved physical phenomena through a mathematical model that allows us to obtain the mixing time for a considered device. Then, we formulate an optimization problem considering the mixing time as the objective function and detailing the design parameters related to the shape and the flow of the mixer. For dealing with this problem, we propose an enhanced optimization algorithm based on the hybridization of two techniques: a genetic algorithm as a core method and a multi-layer line search methodology based on the secant, which aims to improve the initialization of the core method. More precisely, in our hybrid approach, the core optimization is implemented as a sub-problem to be solved at each iteration of the multi-layer algorithm starting from the initial conditions that it provides. Before applying it to the mixer design problem, we validate this methodology by considering a set of benchmark problems and, then, compare its results to those obtained with other classical global optimization methods. As shown in the comparison, for the majority of those problems, our methodology needs fewer evaluations of the objective function, has higher success rates and is more accurate than the other considered algorithms. For those reasons, it has been selected for solving the computationally expensive problem of optimizing the mixer design. The obtained optimized device shows a great reduction in its mixing time with respect to the state-of-the-art mixers.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N228c07832b7946cbb6a1077aae2497a5
    46 N2e13883436b94a9da9c31c414a3c8ea3
    47 sg:journal.1136389
    48 schema:name Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding
    49 schema:pagination 4
    50 schema:productId N3e965beb5d49447ca215b94c66f8d508
    51 N753fc81bff734436ba4e0482e5f56bab
    52 Necc359821bba463ba99af9132963a20c
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104607513
    54 https://doi.org/10.1186/s13362-018-0046-3
    55 schema:sdDatePublished 2019-04-11T10:16
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N8c727fa9928741d09897b72d2467d947
    58 schema:url https://link.springer.com/10.1186%2Fs13362-018-0046-3
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N228c07832b7946cbb6a1077aae2497a5 schema:volumeNumber 8
    63 rdf:type schema:PublicationVolume
    64 N2e13883436b94a9da9c31c414a3c8ea3 schema:issueNumber 1
    65 rdf:type schema:PublicationIssue
    66 N31aa179f8cdb4ec68588c057e4998413 rdf:first sg:person.014263353617.56
    67 rdf:rest Ndc4eb4e531824c3e8e7f87f5ff4ebc07
    68 N3e965beb5d49447ca215b94c66f8d508 schema:name dimensions_id
    69 schema:value pub.1104607513
    70 rdf:type schema:PropertyValue
    71 N6612f3f5ee5648b88f01c430634cebfd rdf:first sg:person.01013551527.98
    72 rdf:rest Nae780266220c45cba29c41d2ffdda48f
    73 N753fc81bff734436ba4e0482e5f56bab schema:name readcube_id
    74 schema:value d61ab9f038f735fefaa5fc7a995467860ce34af28c905c178ba8a581ff2d2469
    75 rdf:type schema:PropertyValue
    76 N8c727fa9928741d09897b72d2467d947 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Na6bb820de41f4967819606e4f2a6b5ca rdf:first sg:person.07360456227.46
    79 rdf:rest N31aa179f8cdb4ec68588c057e4998413
    80 Nae780266220c45cba29c41d2ffdda48f rdf:first sg:person.07370424716.36
    81 rdf:rest Na6bb820de41f4967819606e4f2a6b5ca
    82 Nb407b114d68e42fd86f6d014060dd90c rdf:first sg:person.01156160063.33
    83 rdf:rest Nf18b624f77d04dc1bb5588028f71f8f1
    84 Ndc4eb4e531824c3e8e7f87f5ff4ebc07 rdf:first sg:person.014637622765.46
    85 rdf:rest Nb407b114d68e42fd86f6d014060dd90c
    86 Necc359821bba463ba99af9132963a20c schema:name doi
    87 schema:value 10.1186/s13362-018-0046-3
    88 rdf:type schema:PropertyValue
    89 Nf18b624f77d04dc1bb5588028f71f8f1 rdf:first sg:person.01254270307.46
    90 rdf:rest rdf:nil
    91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Mathematical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Numerical and Computational Mathematics
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136389 schema:issn 2190-5983
    98 schema:name Journal of Mathematics in Industry
    99 rdf:type schema:Periodical
    100 sg:person.01013551527.98 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
    101 schema:familyName Ivorra
    102 schema:givenName Benjamin
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013551527.98
    104 rdf:type schema:Person
    105 sg:person.01156160063.33 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    106 schema:familyName Santiago
    107 schema:givenName Juan G.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156160063.33
    109 rdf:type schema:Person
    110 sg:person.01254270307.46 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
    111 schema:familyName Ramos
    112 schema:givenName Ángel M.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254270307.46
    114 rdf:type schema:Person
    115 sg:person.014263353617.56 schema:affiliation https://www.grid.ac/institutes/grid.28020.38
    116 schema:familyName Redondo
    117 schema:givenName Juana L.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263353617.56
    119 rdf:type schema:Person
    120 sg:person.014637622765.46 schema:affiliation https://www.grid.ac/institutes/grid.28020.38
    121 schema:familyName Ortigosa
    122 schema:givenName Pilar M.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637622765.46
    124 rdf:type schema:Person
    125 sg:person.07360456227.46 schema:affiliation https://www.grid.ac/institutes/grid.28479.30
    126 schema:familyName Crespo
    127 schema:givenName María
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07360456227.46
    129 rdf:type schema:Person
    130 sg:person.07370424716.36 schema:affiliation https://www.grid.ac/institutes/grid.28020.38
    131 schema:familyName Ferrández
    132 schema:givenName Miriam R.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07370424716.36
    134 rdf:type schema:Person
    135 sg:pub.10.1007/978-1-4020-8758-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048656916
    136 https://doi.org/10.1007/978-1-4020-8758-5
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-1-4757-3040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035628236
    139 https://doi.org/10.1007/978-1-4757-3040-1
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-540-48765-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011141970
    142 https://doi.org/10.1007/978-3-540-48765-4_16
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-540-75444-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024104405
    145 https://doi.org/10.1007/978-3-540-75444-2_12
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf00933504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865316
    148 https://doi.org/10.1007/bf00933504
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00500-010-0651-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485124
    151 https://doi.org/10.1007/s00500-010-0651-6
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10898-007-9221-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017885094
    154 https://doi.org/10.1007/s10898-007-9221-6
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s10915-017-0489-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090291496
    157 https://doi.org/10.1007/s10915-017-0489-5
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10957-007-9251-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038000917
    160 https://doi.org/10.1007/s10957-007-9251-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10957-011-9874-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003938380
    163 https://doi.org/10.1007/s10957-011-9874-7
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11081-013-9212-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046282052
    166 https://doi.org/10.1007/s11081-013-9212-z
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
    169 https://doi.org/10.1023/a:1008202821328
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1012387510553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036611968
    172 https://doi.org/10.1023/a:1012387510553
    173 rdf:type schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1035628236 schema:CreativeWork
    175 https://doi.org/10.1002/nme.1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026739118
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1002/nme.2209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020262789
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/0009-2509(53)80001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016940601
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.cma.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036702215
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.compfluid.2003.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013052757
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.ejor.2004.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014293577
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.ejor.2004.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016050979
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.ejor.2010.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017772136
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.ejor.2012.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021808423
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.ejor.2013.12.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004299143
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.mcm.2011.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018935784
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0006-3495(96)79538-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000069098
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1021/ac048661s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054996200
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1021/ac051903j schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997629
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1021/ac070528n schema:sameAs https://app.dimensions.ai/details/publication/pub.1054999370
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1063/1.4793612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070227
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1063/1.4939006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012100409
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/10618560600771758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052588309
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physrevlett.80.3863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817366
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/isda.2009.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094999890
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1504/ijcse.2006.012769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067444639
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    218 schema:name Mechanical Engineering Dept., Stanford University, Stanford, USA
    219 rdf:type schema:Organization
    220 https://www.grid.ac/institutes/grid.28020.38 schema:alternateName University of Almería
    221 schema:name Dept. de Arquitectura de Computadores y Electrónica, Universidad de Almeria, ceiA3, La Cañada de San Urbano, Spain
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.28479.30 schema:alternateName King Juan Carlos University
    224 schema:name Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, Madrid, Spain
    225 rdf:type schema:Organization
    226 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
    227 schema:name Instituto de Matemática Interdisciplinar (IMI), Grupo MOMAT, Dept. de Análisis Matemático – Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...