Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Tomás Chacón Rebollo, Enrique Delgado Ávila, Macarena Gómez Mármol, Samuele Rubino

ABSTRACT

In this work, we study the performance of some local projection-based solvers in the Large Eddy Simulation (LES) of laminar and turbulent flows governed by the incompressible Navier–Stokes Equations (NSE). On one side, we focus on a high-order term-by-term stabilization Finite Element (FE) method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard Local Projection Stabilization (LPS) methods is replaced by an interpolation-stabilized structure. The interest of LPS methods is that they ensure a self-adapting high accuracy in laminar regions of turbulent flows, which turns to be of overall optimal high accuracy if the flow is fully laminar. On the other side, we propose a new Reduced Basis (RB) Variational Multi-Scale (VMS)-Smargorinsky turbulence model, based upon an empirical interpolation of the sub-grid eddy viscosity term. This method yields dramatical improvements of the computing time for benchmark flows. An overview about known results from the numerical analysis of the proposed methods is given, by highlighting the used mathematical tools. In the numerical study, we have considered two well known problems with applications in industry: the (3D) turbulent flow in a channel and the (2D/3D) recirculating flow in a lid-driven cavity. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13362-018-0045-4

DOI

http://dx.doi.org/10.1186/s13362-018-0045-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104481239


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Seville", 
          "id": "https://www.grid.ac/institutes/grid.9224.d", 
          "name": [
            "Dpto. de Ecuaciones Diferenciales y An\u00e1lisis Num\u00e9rico, Facultad de Matem\u00e1ticas, Universidad de Sevilla, Sevilla, Spain", 
            "IMUS, Universidad de Sevilla, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chac\u00f3n Rebollo", 
        "givenName": "Tom\u00e1s", 
        "id": "sg:person.014622526611.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622526611.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seville", 
          "id": "https://www.grid.ac/institutes/grid.9224.d", 
          "name": [
            "Dpto. de Ecuaciones Diferenciales y An\u00e1lisis Num\u00e9rico, Facultad de Matem\u00e1ticas, Universidad de Sevilla, Sevilla, Spain", 
            "IMUS, Universidad de Sevilla, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgado \u00c1vila", 
        "givenName": "Enrique", 
        "id": "sg:person.012025164734.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025164734.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seville", 
          "id": "https://www.grid.ac/institutes/grid.9224.d", 
          "name": [
            "Dpto. de Ecuaciones Diferenciales y An\u00e1lisis Num\u00e9rico, Facultad de Matem\u00e1ticas, Universidad de Sevilla, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez M\u00e1rmol", 
        "givenName": "Macarena", 
        "id": "sg:person.013622737142.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622737142.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seville", 
          "id": "https://www.grid.ac/institutes/grid.9224.d", 
          "name": [
            "Dpto. de Ecuaciones Diferenciales y An\u00e1lisis Num\u00e9rico, Facultad de Matem\u00e1ticas, Universidad de Sevilla, Sevilla, Spain", 
            "IMUS, Universidad de Sevilla, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubino", 
        "givenName": "Samuele", 
        "id": "sg:person.07656406405.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656406405.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cma.2012.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003621568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1990-1011446-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007327697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2014.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010189444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2015.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011725134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-014-9918-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013708767", 
          "https://doi.org/10.1007/s10915-014-9918-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-8659(97)80004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016542926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01395985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018802192", 
          "https://doi.org/10.1007/bf01395985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2009.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025376375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-015-9161-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031712298", 
          "https://doi.org/10.1007/s11831-015-9161-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032352813", 
          "https://doi.org/10.1007/s002110050341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(00)00260-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034236998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2013.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036610433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038036156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038036156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jnum-2012-0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040044386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045528916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2009.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051359381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(97)00206-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052768503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25727-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053180075", 
          "https://doi.org/10.1007/978-3-319-25727-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2014013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057032541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an:2007031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058110696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drs023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drw048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059690037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050631227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-017-0469-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085869744", 
          "https://doi.org/10.1007/s10915-017-0469-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-017-0469-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085869744", 
          "https://doi.org/10.1007/s10915-017-0469-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1060066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091035978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611974065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/17m1118233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099880739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100740250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100740250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-63082-3_87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101647537", 
          "https://doi.org/10.1007/978-3-319-63082-3_87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-63082-3_87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101647537", 
          "https://doi.org/10.1007/978-3-319-63082-3_87"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In this work, we study the performance of some local projection-based solvers in the Large Eddy Simulation (LES) of laminar and turbulent flows governed by the incompressible Navier\u2013Stokes Equations (NSE). On one side, we focus on a high-order term-by-term stabilization Finite Element (FE) method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard Local Projection Stabilization (LPS) methods is replaced by an interpolation-stabilized structure. The interest of LPS methods is that they ensure a self-adapting high accuracy in laminar regions of turbulent flows, which turns to be of overall optimal high accuracy if the flow is fully laminar. On the other side, we propose a new Reduced Basis (RB) Variational Multi-Scale (VMS)-Smargorinsky turbulence model, based upon an empirical interpolation of the sub-grid eddy viscosity term. This method yields dramatical improvements of the computing time for benchmark flows. An overview about known results from the numerical analysis of the proposed methods is given, by highlighting the used mathematical tools. In the numerical study, we have considered two well known problems with applications in industry: the (3D) turbulent flow in a channel and the (2D/3D) recirculating flow in a lid-driven cavity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13362-018-0045-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136389", 
        "issn": [
          "2190-5983"
        ], 
        "name": "Journal of Mathematics in Industry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c30371b0e49c4f214dffb83001b4d1e36f8dd234f8e06288356f9dbb2e8cf79c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13362-018-0045-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104481239"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13362-018-0045-4", 
      "https://app.dimensions.ai/details/publication/pub.1104481239"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13362-018-0045-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0045-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0045-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0045-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0045-4'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13362-018-0045-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N64af111f794e43a2b001e1fb380272c3
4 schema:citation sg:pub.10.1007/978-3-319-25727-3_5
5 sg:pub.10.1007/978-3-319-63082-3_87
6 sg:pub.10.1007/bf01395985
7 sg:pub.10.1007/s002110050341
8 sg:pub.10.1007/s10915-014-9918-x
9 sg:pub.10.1007/s10915-017-0469-9
10 sg:pub.10.1007/s11831-015-9161-0
11 https://doi.org/10.1002/fld.961
12 https://doi.org/10.1016/j.apnum.2009.06.004
13 https://doi.org/10.1016/j.cma.2009.01.010
14 https://doi.org/10.1016/j.cma.2012.07.020
15 https://doi.org/10.1016/j.cma.2014.11.023
16 https://doi.org/10.1016/j.cma.2018.01.026
17 https://doi.org/10.1016/j.compfluid.2015.05.011
18 https://doi.org/10.1016/j.jcp.2005.07.007
19 https://doi.org/10.1016/j.matcom.2013.04.023
20 https://doi.org/10.1016/s0045-7825(00)00260-7
21 https://doi.org/10.1016/s0045-7825(97)00206-5
22 https://doi.org/10.1016/s1570-8659(97)80004-x
23 https://doi.org/10.1051/m2an/2014013
24 https://doi.org/10.1051/m2an:2007031
25 https://doi.org/10.1063/1.857491
26 https://doi.org/10.1063/1.869966
27 https://doi.org/10.1090/s0025-5718-1990-1011446-7
28 https://doi.org/10.1093/imanum/drs023
29 https://doi.org/10.1093/imanum/drw048
30 https://doi.org/10.1137/050631227
31 https://doi.org/10.1137/1.9781611974065
32 https://doi.org/10.1137/16m1060066
33 https://doi.org/10.1137/17m1118233
34 https://doi.org/10.1515/jnum-2012-0013
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description In this work, we study the performance of some local projection-based solvers in the Large Eddy Simulation (LES) of laminar and turbulent flows governed by the incompressible Navier–Stokes Equations (NSE). On one side, we focus on a high-order term-by-term stabilization Finite Element (FE) method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard Local Projection Stabilization (LPS) methods is replaced by an interpolation-stabilized structure. The interest of LPS methods is that they ensure a self-adapting high accuracy in laminar regions of turbulent flows, which turns to be of overall optimal high accuracy if the flow is fully laminar. On the other side, we propose a new Reduced Basis (RB) Variational Multi-Scale (VMS)-Smargorinsky turbulence model, based upon an empirical interpolation of the sub-grid eddy viscosity term. This method yields dramatical improvements of the computing time for benchmark flows. An overview about known results from the numerical analysis of the proposed methods is given, by highlighting the used mathematical tools. In the numerical study, we have considered two well known problems with applications in industry: the (3D) turbulent flow in a channel and the (2D/3D) recirculating flow in a lid-driven cavity.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N64ae990beb484b4fab5c9ac8b34e3295
42 Na8aac0e1d07e46b7b37efc19209d4a99
43 sg:journal.1136389
44 schema:name Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows
45 schema:pagination 3
46 schema:productId N08eed2fd8c5148b8bb5079366559bdb4
47 Nce9101674690426d9ce73ca11cced7be
48 Nf980574c07de4280aa64ddb0c2664dde
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104481239
50 https://doi.org/10.1186/s13362-018-0045-4
51 schema:sdDatePublished 2019-04-11T12:38
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N86a02555cf9b4103982be0c2271ca0e3
54 schema:url https://link.springer.com/10.1186%2Fs13362-018-0045-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N08eed2fd8c5148b8bb5079366559bdb4 schema:name readcube_id
59 schema:value c30371b0e49c4f214dffb83001b4d1e36f8dd234f8e06288356f9dbb2e8cf79c
60 rdf:type schema:PropertyValue
61 N0b0294f127d74dbbb6e7c753441d5896 rdf:first sg:person.012025164734.90
62 rdf:rest Nab254a6ee2f245488c268a81774a0575
63 N475d18ae034e477eb242920cc7f2b546 rdf:first sg:person.07656406405.11
64 rdf:rest rdf:nil
65 N64ae990beb484b4fab5c9ac8b34e3295 schema:volumeNumber 8
66 rdf:type schema:PublicationVolume
67 N64af111f794e43a2b001e1fb380272c3 rdf:first sg:person.014622526611.78
68 rdf:rest N0b0294f127d74dbbb6e7c753441d5896
69 N86a02555cf9b4103982be0c2271ca0e3 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Na8aac0e1d07e46b7b37efc19209d4a99 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nab254a6ee2f245488c268a81774a0575 rdf:first sg:person.013622737142.92
74 rdf:rest N475d18ae034e477eb242920cc7f2b546
75 Nce9101674690426d9ce73ca11cced7be schema:name dimensions_id
76 schema:value pub.1104481239
77 rdf:type schema:PropertyValue
78 Nf980574c07de4280aa64ddb0c2664dde schema:name doi
79 schema:value 10.1186/s13362-018-0045-4
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
85 schema:name Interdisciplinary Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1136389 schema:issn 2190-5983
88 schema:name Journal of Mathematics in Industry
89 rdf:type schema:Periodical
90 sg:person.012025164734.90 schema:affiliation https://www.grid.ac/institutes/grid.9224.d
91 schema:familyName Delgado Ávila
92 schema:givenName Enrique
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012025164734.90
94 rdf:type schema:Person
95 sg:person.013622737142.92 schema:affiliation https://www.grid.ac/institutes/grid.9224.d
96 schema:familyName Gómez Mármol
97 schema:givenName Macarena
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622737142.92
99 rdf:type schema:Person
100 sg:person.014622526611.78 schema:affiliation https://www.grid.ac/institutes/grid.9224.d
101 schema:familyName Chacón Rebollo
102 schema:givenName Tomás
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622526611.78
104 rdf:type schema:Person
105 sg:person.07656406405.11 schema:affiliation https://www.grid.ac/institutes/grid.9224.d
106 schema:familyName Rubino
107 schema:givenName Samuele
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656406405.11
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-319-25727-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053180075
111 https://doi.org/10.1007/978-3-319-25727-3_5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-63082-3_87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101647537
114 https://doi.org/10.1007/978-3-319-63082-3_87
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01395985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018802192
117 https://doi.org/10.1007/bf01395985
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s002110050341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032352813
120 https://doi.org/10.1007/s002110050341
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10915-014-9918-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013708767
123 https://doi.org/10.1007/s10915-014-9918-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10915-017-0469-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085869744
126 https://doi.org/10.1007/s10915-017-0469-9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11831-015-9161-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031712298
129 https://doi.org/10.1007/s11831-015-9161-0
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/fld.961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528916
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apnum.2009.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051359381
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cma.2009.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025376375
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.cma.2012.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003621568
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cma.2014.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010189444
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cma.2018.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100740250
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.compfluid.2015.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011725134
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jcp.2005.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038036156
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matcom.2013.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036610433
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0045-7825(00)00260-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034236998
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0045-7825(97)00206-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052768503
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1570-8659(97)80004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016542926
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1051/m2an/2014013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057032541
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1051/m2an:2007031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033237
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.857491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058110696
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.869966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122114
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1090/s0025-5718-1990-1011446-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007327697
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/imanum/drs023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689756
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/imanum/drw048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690037
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1137/050631227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846236
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1137/1.9781611974065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556646
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1137/16m1060066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091035978
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1137/17m1118233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099880739
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1515/jnum-2012-0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040044386
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.9224.d schema:alternateName University of Seville
180 schema:name Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Sevilla, Spain
181 IMUS, Universidad de Sevilla, Sevilla, Spain
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...