Optimal logistics strategy to distribute medicines in clinics and hospitals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Gilberto Pérez Lechuga

ABSTRACT

This document presents a methodology for the optimal selection of the vehicle fleet necessary to distribute medical products from the company’s storage center to many intermediate transfer nodes, and from these to a group of public hospitals. The problem addressed is a real case presented by a company that provides logistics services in the Mexican Republic. An algorithm that incorporates three modified mathematical models was designed for its solution. A version of the Dijkstra algorithm was modified for the solution to develop the clustering of nodes (clinics) within the system. A modified version of the model of the traveling salesman generated the routes of the transports and the sequence of distribution of the products. Finally, a model of mixed integer linear programming provided the quantities and characteristics of the transports to buy. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13362-018-0044-5

DOI

http://dx.doi.org/10.1186/s13362-018-0044-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104133067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad Aut\u00f3noma del Estado de Hidalgo", 
          "id": "https://www.grid.ac/institutes/grid.412866.f", 
          "name": [
            "Divisi\u00f3n de Investigaci\u00f3n Desarrollo e Innovaci\u00f3n, Universidad Aut\u00f3noma del Estado de Hidalgo, Pachuca, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez Lechuga", 
        "givenName": "Gilberto", 
        "id": "sg:person.016256323431.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016256323431.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1108/17538291311316063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005038346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2009.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015291885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015648665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2008.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015926237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2016.07.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016021076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2010.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020723425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2007.10.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025113601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026435825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2009.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031846132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03088839.2010.486635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034361677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2008.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042091755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2012.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042985560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orhc.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044299379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.04.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044320037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbspro.2011.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045034645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09574099810805843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049342477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/030888300286680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051250153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2010.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053405586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1030.0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2498/cit.1002172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070861035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1235906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102652327"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "This document presents a methodology for the optimal selection of the vehicle fleet necessary to distribute medical products from the company\u2019s storage center to many intermediate transfer nodes, and from these to a group of public hospitals. The problem addressed is a real case presented by a company that provides logistics services in the Mexican Republic. An algorithm that incorporates three modified mathematical models was designed for its solution. A version of the Dijkstra algorithm was modified for the solution to develop the clustering of nodes (clinics) within the system. A modified version of the model of the traveling salesman generated the routes of the transports and the sequence of distribution of the products. Finally, a model of mixed integer linear programming provided the quantities and characteristics of the transports to buy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13362-018-0044-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136389", 
        "issn": [
          "2190-5983"
        ], 
        "name": "Journal of Mathematics in Industry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Optimal logistics strategy to distribute medicines in clinics and hospitals", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3bd0d8643ce9c7b4c34d2957826b1669b7862b3cd72ef1efa0ee07f54d2d73a7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13362-018-0044-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104133067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13362-018-0044-5", 
      "https://app.dimensions.ai/details/publication/pub.1104133067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13362-018-0044-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0044-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0044-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0044-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0044-5'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13362-018-0044-5 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8ca89404d5f54a109357690ef7e0557b
4 schema:citation https://doi.org/10.1016/j.cie.2012.11.007
5 https://doi.org/10.1016/j.cor.2010.03.015
6 https://doi.org/10.1016/j.ejor.2007.10.057
7 https://doi.org/10.1016/j.ejor.2008.08.003
8 https://doi.org/10.1016/j.ejor.2012.06.025
9 https://doi.org/10.1016/j.ejor.2013.04.058
10 https://doi.org/10.1016/j.jclepro.2008.04.020
11 https://doi.org/10.1016/j.orhc.2013.08.001
12 https://doi.org/10.1016/j.proeng.2016.07.236
13 https://doi.org/10.1016/j.sbspro.2011.08.004
14 https://doi.org/10.1016/j.trc.2009.08.005
15 https://doi.org/10.1016/j.trc.2010.07.008
16 https://doi.org/10.1016/j.tre.2008.10.003
17 https://doi.org/10.1016/j.tre.2009.06.004
18 https://doi.org/10.1080/030888300286680
19 https://doi.org/10.1080/03088839.2010.486635
20 https://doi.org/10.1108/09574099810805843
21 https://doi.org/10.1108/17538291311316063
22 https://doi.org/10.1287/trsc.1030.0026
23 https://doi.org/10.2307/1235906
24 https://doi.org/10.2498/cit.1002172
25 schema:datePublished 2018-12
26 schema:datePublishedReg 2018-12-01
27 schema:description This document presents a methodology for the optimal selection of the vehicle fleet necessary to distribute medical products from the company’s storage center to many intermediate transfer nodes, and from these to a group of public hospitals. The problem addressed is a real case presented by a company that provides logistics services in the Mexican Republic. An algorithm that incorporates three modified mathematical models was designed for its solution. A version of the Dijkstra algorithm was modified for the solution to develop the clustering of nodes (clinics) within the system. A modified version of the model of the traveling salesman generated the routes of the transports and the sequence of distribution of the products. Finally, a model of mixed integer linear programming provided the quantities and characteristics of the transports to buy.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nc0be743247374343983bf0bc024a543b
32 Nd507c9032b0c49aab4192abb35d99a22
33 sg:journal.1136389
34 schema:name Optimal logistics strategy to distribute medicines in clinics and hospitals
35 schema:pagination 2
36 schema:productId N38eeee4d66114e4999fbd26b5727e8cb
37 N72505417b1f743acbc10d568db5b45cf
38 Nbd0c3e06679d495cbb1e3e1a9d102fe2
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104133067
40 https://doi.org/10.1186/s13362-018-0044-5
41 schema:sdDatePublished 2019-04-11T09:52
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N7e45cc88800f45a6ab9411cc92a96b73
44 schema:url https://link.springer.com/10.1186%2Fs13362-018-0044-5
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N38eeee4d66114e4999fbd26b5727e8cb schema:name dimensions_id
49 schema:value pub.1104133067
50 rdf:type schema:PropertyValue
51 N72505417b1f743acbc10d568db5b45cf schema:name readcube_id
52 schema:value 3bd0d8643ce9c7b4c34d2957826b1669b7862b3cd72ef1efa0ee07f54d2d73a7
53 rdf:type schema:PropertyValue
54 N7e45cc88800f45a6ab9411cc92a96b73 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N8ca89404d5f54a109357690ef7e0557b rdf:first sg:person.016256323431.02
57 rdf:rest rdf:nil
58 Nbd0c3e06679d495cbb1e3e1a9d102fe2 schema:name doi
59 schema:value 10.1186/s13362-018-0044-5
60 rdf:type schema:PropertyValue
61 Nc0be743247374343983bf0bc024a543b schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 Nd507c9032b0c49aab4192abb35d99a22 schema:volumeNumber 8
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
69 schema:name Applied Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136389 schema:issn 2190-5983
72 schema:name Journal of Mathematics in Industry
73 rdf:type schema:Periodical
74 sg:person.016256323431.02 schema:affiliation https://www.grid.ac/institutes/grid.412866.f
75 schema:familyName Pérez Lechuga
76 schema:givenName Gilberto
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016256323431.02
78 rdf:type schema:Person
79 https://doi.org/10.1016/j.cie.2012.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042985560
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.cor.2010.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053405586
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.ejor.2007.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025113601
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.ejor.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015648665
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.ejor.2012.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026435825
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ejor.2013.04.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044320037
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.jclepro.2008.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042091755
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.orhc.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044299379
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.proeng.2016.07.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016021076
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.sbspro.2011.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045034645
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.trc.2009.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846132
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.trc.2010.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020723425
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.tre.2008.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015926237
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.tre.2009.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015291885
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/030888300286680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051250153
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/03088839.2010.486635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034361677
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1108/09574099810805843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049342477
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1108/17538291311316063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005038346
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1287/trsc.1030.0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734073
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/1235906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102652327
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2498/cit.1002172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070861035
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.412866.f schema:alternateName Universidad Autónoma del Estado de Hidalgo
122 schema:name División de Investigación Desarrollo e Innovación, Universidad Autónoma del Estado de Hidalgo, Pachuca, México
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...