Reduced basis method applied to a convective stability problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Henar Herrero, Yvon Maday, Francisco Pla

ABSTRACT

Numerical reduced basis methods are instrumental to solve parameter dependent partial differential equations problems in case of many queries. Bifurcation and instability problems have these characteristics as different solutions emerge by varying a bifurcation parameter. Rayleigh–Bénard convection is an instability problem with multiple steady solutions and bifurcations by varying the Rayleigh number. In this paper the eigenvalue problem of the corresponding linear stability analysis has been solved with this method. The resulting matrices are small, the eigenvalues are easily calculated and the bifurcation points are correctly captured. Nine branches of stable and unstable solutions are obtained with this method in an interval of values of the Rayleigh number. Different basis sets are considered in each branch. The reduced basis method permits one to obtain the bifurcation diagrams with much lower computational cost. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13362-018-0043-6

DOI

http://dx.doi.org/10.1186/s13362-018-0043-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103396202


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dpto. Matem\u00e1ticas, Univ. Castilla-La Mancha, Ciudad Real, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrero", 
        "givenName": "Henar", 
        "id": "sg:person.010157257743.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010157257743.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brown University", 
          "id": "https://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Laboratoire Jacques-Louis Lions, UMR 7598, Sorbone Universit\u00e9s, UPMC Univ. Paris 06, Paris, France", 
            "Institut Universitaire de France, Paris, France", 
            "Division of Applied Maths, Brown University, Providence, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maday", 
        "givenName": "Yvon", 
        "id": "sg:person.015101072051.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101072051.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dpto. Matem\u00e1ticas, Univ. Castilla-La Mancha, Ciudad Real, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pla", 
        "givenName": "Francisco", 
        "id": "sg:person.016330410711.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330410711.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nme.1620191206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000749210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620191206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000749210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19950750709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003756671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005443503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005443503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786441608635602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006815760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6356-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012181276", 
          "https://doi.org/10.1007/978-1-4020-6356-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6356-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012181276", 
          "https://doi.org/10.1007/978-1-4020-6356-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1996.0016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012299995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(81)90046-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013091781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(81)90046-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013091781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(88)90110-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019791915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2008.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020184189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2013.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031384630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620200711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033873219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620200711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033873219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038765747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-008-9019-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038888932", 
          "https://doi.org/10.1007/s11831-008-9019-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039300361", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039300361", 
          "https://doi.org/10.1007/978-3-642-84108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039300361", 
          "https://doi.org/10.1007/978-3-642-84108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0362-546x(97)00635-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041133280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044169784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.7539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050586073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1448332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0724083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853310"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Numerical reduced basis methods are instrumental to solve parameter dependent partial differential equations problems in case of many queries. Bifurcation and instability problems have these characteristics as different solutions emerge by varying a bifurcation parameter. Rayleigh\u2013B\u00e9nard convection is an instability problem with multiple steady solutions and bifurcations by varying the Rayleigh number. In this paper the eigenvalue problem of the corresponding linear stability analysis has been solved with this method. The resulting matrices are small, the eigenvalues are easily calculated and the bifurcation points are correctly captured. Nine branches of stable and unstable solutions are obtained with this method in an interval of values of the Rayleigh number. Different basis sets are considered in each branch. The reduced basis method permits one to obtain the bifurcation diagrams with much lower computational cost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13362-018-0043-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136389", 
        "issn": [
          "2190-5983"
        ], 
        "name": "Journal of Mathematics in Industry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Reduced basis method applied to a convective stability problem", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "edcc30c088b7f3f34e9f6e6ee35289b850a8042ac01be891de1c55c25d9915d5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13362-018-0043-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103396202"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13362-018-0043-6", 
      "https://app.dimensions.ai/details/publication/pub.1103396202"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13362-018-0043-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0043-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0043-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0043-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13362-018-0043-6'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13362-018-0043-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N50ce0a80f7224eaca15fce90a64e83dc
4 schema:citation sg:pub.10.1007/978-1-4020-6356-5
5 sg:pub.10.1007/978-3-642-84108-8
6 sg:pub.10.1007/s11831-008-9019-9
7 https://app.dimensions.ai/details/publication/pub.1039300361
8 https://doi.org/10.1002/fld.317
9 https://doi.org/10.1002/nme.1620191206
10 https://doi.org/10.1002/nme.1620200711
11 https://doi.org/10.1002/zamm.19950750709
12 https://doi.org/10.1006/jdeq.1996.0016
13 https://doi.org/10.1016/0022-0396(88)90110-6
14 https://doi.org/10.1016/0045-7825(81)90046-3
15 https://doi.org/10.1016/0167-2789(84)90179-9
16 https://doi.org/10.1016/j.cma.2013.02.018
17 https://doi.org/10.1016/j.physd.2008.12.015
18 https://doi.org/10.1016/j.physd.2010.03.001
19 https://doi.org/10.1016/j.physd.2012.04.009
20 https://doi.org/10.1016/s0362-546x(97)00635-4
21 https://doi.org/10.1080/14786441608635602
22 https://doi.org/10.1103/physreve.81.036323
23 https://doi.org/10.1115/1.1448332
24 https://doi.org/10.1137/0724083
25 https://doi.org/10.2514/3.7539
26 schema:datePublished 2018-12
27 schema:datePublishedReg 2018-12-01
28 schema:description Numerical reduced basis methods are instrumental to solve parameter dependent partial differential equations problems in case of many queries. Bifurcation and instability problems have these characteristics as different solutions emerge by varying a bifurcation parameter. Rayleigh–Bénard convection is an instability problem with multiple steady solutions and bifurcations by varying the Rayleigh number. In this paper the eigenvalue problem of the corresponding linear stability analysis has been solved with this method. The resulting matrices are small, the eigenvalues are easily calculated and the bifurcation points are correctly captured. Nine branches of stable and unstable solutions are obtained with this method in an interval of values of the Rayleigh number. Different basis sets are considered in each branch. The reduced basis method permits one to obtain the bifurcation diagrams with much lower computational cost.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Nde59fafcef144de38cd4615dce38eff8
33 Ne409245a3f6047849bac7f2786c7f920
34 sg:journal.1136389
35 schema:name Reduced basis method applied to a convective stability problem
36 schema:pagination 1
37 schema:productId N04e0404466ef42d6b5094f8acf588c96
38 N0593338212614f7cb663b8d462461a30
39 N54471250ab344039a4db3536096f46b4
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103396202
41 https://doi.org/10.1186/s13362-018-0043-6
42 schema:sdDatePublished 2019-04-11T10:32
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nd10bdc424bf14818ad3977e38d5f416e
45 schema:url https://link.springer.com/10.1186%2Fs13362-018-0043-6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N04e0404466ef42d6b5094f8acf588c96 schema:name dimensions_id
50 schema:value pub.1103396202
51 rdf:type schema:PropertyValue
52 N0593338212614f7cb663b8d462461a30 schema:name readcube_id
53 schema:value edcc30c088b7f3f34e9f6e6ee35289b850a8042ac01be891de1c55c25d9915d5
54 rdf:type schema:PropertyValue
55 N4b0cca0ef6ce45eb886c37c5219e8ae5 rdf:first sg:person.015101072051.03
56 rdf:rest N73679f3f08b1466da3d89d896ff1b46b
57 N50ce0a80f7224eaca15fce90a64e83dc rdf:first sg:person.010157257743.18
58 rdf:rest N4b0cca0ef6ce45eb886c37c5219e8ae5
59 N54471250ab344039a4db3536096f46b4 schema:name doi
60 schema:value 10.1186/s13362-018-0043-6
61 rdf:type schema:PropertyValue
62 N73679f3f08b1466da3d89d896ff1b46b rdf:first sg:person.016330410711.09
63 rdf:rest rdf:nil
64 N9359e696f0c24479b9ac55bad6b1f612 schema:name Dpto. Matemáticas, Univ. Castilla-La Mancha, Ciudad Real, Spain
65 rdf:type schema:Organization
66 Na876c15223f14285ad5c6591240c870b schema:name Dpto. Matemáticas, Univ. Castilla-La Mancha, Ciudad Real, Spain
67 rdf:type schema:Organization
68 Nd10bdc424bf14818ad3977e38d5f416e schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nde59fafcef144de38cd4615dce38eff8 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 Ne409245a3f6047849bac7f2786c7f920 schema:volumeNumber 8
73 rdf:type schema:PublicationVolume
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Numerical and Computational Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1136389 schema:issn 2190-5983
81 schema:name Journal of Mathematics in Industry
82 rdf:type schema:Periodical
83 sg:person.010157257743.18 schema:affiliation Na876c15223f14285ad5c6591240c870b
84 schema:familyName Herrero
85 schema:givenName Henar
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010157257743.18
87 rdf:type schema:Person
88 sg:person.015101072051.03 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
89 schema:familyName Maday
90 schema:givenName Yvon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101072051.03
92 rdf:type schema:Person
93 sg:person.016330410711.09 schema:affiliation N9359e696f0c24479b9ac55bad6b1f612
94 schema:familyName Pla
95 schema:givenName Francisco
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330410711.09
97 rdf:type schema:Person
98 sg:pub.10.1007/978-1-4020-6356-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012181276
99 https://doi.org/10.1007/978-1-4020-6356-5
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-642-84108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039300361
102 https://doi.org/10.1007/978-3-642-84108-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11831-008-9019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038888932
105 https://doi.org/10.1007/s11831-008-9019-9
106 rdf:type schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1039300361 schema:CreativeWork
108 https://doi.org/10.1002/fld.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044169784
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/nme.1620191206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000749210
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/nme.1620200711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033873219
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/zamm.19950750709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003756671
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1006/jdeq.1996.0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012299995
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0022-0396(88)90110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202955
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0045-7825(81)90046-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013091781
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0167-2789(84)90179-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005443503
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cma.2013.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031384630
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.physd.2008.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020184189
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.physd.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038765747
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.physd.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019791915
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0362-546x(97)00635-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041133280
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/14786441608635602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006815760
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreve.81.036323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740301
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1115/1.1448332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070085
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/0724083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853310
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2514/3.7539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050586073
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
145 schema:name Division of Applied Maths, Brown University, Providence, USA
146 Institut Universitaire de France, Paris, France
147 Laboratoire Jacques-Louis Lions, UMR 7598, Sorbone Universités, UPMC Univ. Paris 06, Paris, France
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...