Learning from biomedical linked data to suggest valid pharmacogenes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Kevin Dalleau, Yassine Marzougui, Sébastien Da Silva, Patrice Ringot, Ndeye Coumba Ndiaye, Adrien Coulet

ABSTRACT

BACKGROUND: A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, only molecular networks or the biomedical literature were used, whereas many other resources are available. METHOD: We propose here to consume a diverse and larger set of resources using linked data related either to genes, drugs or diseases. One of the advantages of linked data is that they are built on a standard framework that facilitates the joint use of various sources, and thus facilitates considering features of various origins. We propose a selection and linkage of data sources relevant to pharmacogenomics, including for example DisGeNET and Clinvar. We use machine learning to identify and prioritize pharmacogenes that are the most probably valid, considering the selected linked data. This identification relies on the classification of gene-drug pairs as either pharmacogenomically associated or not and was experimented with two machine learning methods -random forest and graph kernel-, which results are compared in this article. RESULTS: We assembled a set of linked data relative to pharmacogenomics, of 2,610,793 triples, coming from six distinct resources. Learning from these data, random forest enables identifying valid pharmacogenes with a F-measure of 0.73, on a 10 folds cross-validation, whereas graph kernel achieves a F-measure of 0.81. A list of top candidates proposed by both approaches is provided and their obtention is discussed. More... »

PAGES

16

References to SciGraph publications

  • 2009-04. gBoost: a mathematical programming approach to graph classification and regression in MACHINE LEARNING
  • 2010. Interactive Relationship Discovery via the Semantic Web in THE SEMANTIC WEB: RESEARCH AND APPLICATIONS
  • 2011. Link Prediction for Annotation Graphs Using Graph Summarization in THE SEMANTIC WEB – ISWC 2011
  • 2011. Relational Kernel Machines for Learning from Graph-Structured RDF Data in THE SEMANTIC WEB: RESEARCH AND APPLICATIONS
  • 2010. MIForests: Multiple-Instance Learning with Randomized Trees in COMPUTER VISION – ECCV 2010
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2012. Graph Kernels for RDF Data in THE SEMANTIC WEB: RESEARCH AND APPLICATIONS
  • 2011. Multivariate Prediction for Learning on the Semantic Web in INDUCTIVE LOGIC PROGRAMMING
  • 2012-10. Pharmacogenomics Knowledge for Personalized Medicine in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 2011-12. Linked open drug data for pharmaceutical research and development in JOURNAL OF CHEMINFORMATICS
  • 2013. A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data in ADVANCED INFORMATION SYSTEMS ENGINEERING
  • 2009. Discovering and Maintaining Links on the Web of Data in THE SEMANTIC WEB - ISWC 2009
  • 2013. Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data in THE SEMANTIC WEB: SEMANTICS AND BIG DATA
  • 2011-12. Integration and publication of heterogeneous text-mined relationships on the Semantic Web in JOURNAL OF BIOMEDICAL SEMANTICS
  • 2011-03-15. Ontology-Based Knowledge Discovery in Pharmacogenomics in SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS
  • 2009-08. Generating Genome‐Scale Candidate Gene Lists for Pharmacogenomics in CLINICAL PHARMACOLOGY & THERAPEUTICS
  • 2012-04. Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy in THE PHARMACOGENOMICS JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13326-017-0125-1

    DOI

    http://dx.doi.org/10.1186/s13326-017-0125-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084954536

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28427468


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Graphics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Data Mining", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pharmacogenetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semantic Web", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.29172.3f", 
              "name": [
                "LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dalleau", 
            "givenName": "Kevin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
              "id": "https://www.grid.ac/institutes/grid.473477.4", 
              "name": [
                "LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France", 
                "Ecole nationale sup\u00e9rieure des mines de Nancy, Campus Artem, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marzougui", 
            "givenName": "Yassine", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.29172.3f", 
              "name": [
                "LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Da Silva", 
            "givenName": "S\u00e9bastien", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.29172.3f", 
              "name": [
                "LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ringot", 
            "givenName": "Patrice", 
            "id": "sg:person.012273324713.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273324713.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.29172.3f", 
              "name": [
                "UMR U1122 IGE-PCV (INSERM, University of Lorraine), 30 Rue Lionnois, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ndiaye", 
            "givenName": "Ndeye Coumba", 
            "id": "sg:person.0636436260.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636436260.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Lorraine", 
              "id": "https://www.grid.ac/institutes/grid.29172.3f", 
              "name": [
                "LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coulet", 
            "givenName": "Adrien", 
            "id": "sg:person.01222343441.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222343441.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.websem.2012.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000616485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-25073-6_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000871135", 
              "https://doi.org/10.1007/978-3-642-25073-6_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.websem.2015.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004505900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbn056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004892751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/jswis.2009081901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005783792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40988-2_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006632788", 
              "https://doi.org/10.1007/978-3-642-40988-2_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/pgs.11.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008222769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7046-6_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009091349", 
              "https://doi.org/10.1007/978-1-4419-7046-6_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7046-6_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009091349", 
              "https://doi.org/10.1007/978-1-4419-7046-6_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009629440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010688117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/jto.0b013e318200f415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011120861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1535-7163.mct-07-0567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011849904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012829499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbl025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013689192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014062999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21034-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016266430", 
              "https://doi.org/10.1007/978-3-642-21034-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21034-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016266430", 
              "https://doi.org/10.1007/978-3-642-21034-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/database/bav028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016887040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/pgs.12.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018903459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/pgs.13.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023023868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-2-s2-s10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023199789", 
              "https://doi.org/10.1186/2041-1480-2-s2-s10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024958425", 
              "https://doi.org/10.1007/978-3-642-13486-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13486-9_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024958425", 
              "https://doi.org/10.1007/978-3-642-13486-9_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmp1314529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028605831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029244124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032332544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbp024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032575865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbp024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032575865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tpj.2010.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034584832", 
              "https://doi.org/10.1038/tpj.2010.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1758-2946-3-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034947266", 
              "https://doi.org/10.1186/1758-2946-3-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035455769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035750901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circgenetics.113.000106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035750901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/pgs.10.136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037281435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2009.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038070182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2009.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038070182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-30284-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038167434", 
              "https://doi.org/10.1007/978-3-642-30284-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-008-5089-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039278711", 
              "https://doi.org/10.1007/s10994-008-5089-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-008-5089-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039278711", 
              "https://doi.org/10.1007/s10994-008-5089-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21295-6_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040427235", 
              "https://doi.org/10.1007/978-3-642-21295-6_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21295-6_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040427235", 
              "https://doi.org/10.1007/978-3-642-21295-6_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/17410541.2.4.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041524217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04930-9_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041594463", 
              "https://doi.org/10.1007/978-3-642-04930-9_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04930-9_41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041594463", 
              "https://doi.org/10.1007/978-3-642-04930-9_41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2012.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042146639", 
              "https://doi.org/10.1038/clpt.2012.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043603670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814583220_0032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043741119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/clpt.2009.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046077944", 
              "https://doi.org/10.1038/clpt.2009.42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38288-8_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046984378", 
              "https://doi.org/10.1007/978-3-642-38288-8_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artint.2013.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049027564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814366496_0040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049687001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15567-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049701313", 
              "https://doi.org/10.1007/978-3-642-15567-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15567-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049701313", 
              "https://doi.org/10.1007/978-3-642-15567-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053243672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077983687", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2002.1184038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094010722"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, only molecular networks or the biomedical literature were used, whereas many other resources are available.\nMETHOD: We propose here to consume a diverse and larger set of resources using linked data related either to genes, drugs or diseases. One of the advantages of linked data is that they are built on a standard framework that facilitates the joint use of various sources, and thus facilitates considering features of various origins. We propose a selection and linkage of data sources relevant to pharmacogenomics, including for example DisGeNET and Clinvar. We use machine learning to identify and prioritize pharmacogenes that are the most probably valid, considering the selected linked data. This identification relies on the classification of gene-drug pairs as either pharmacogenomically associated or not and was experimented with two machine learning methods -random forest and graph kernel-, which results are compared in this article.\nRESULTS: We assembled a set of linked data relative to pharmacogenomics, of 2,610,793 triples, coming from six distinct resources. Learning from these data, random forest enables identifying valid pharmacogenes with a F-measure of 0.73, on a 10 folds cross-validation, whereas graph kernel achieves a F-measure of 0.81. A list of top candidates proposed by both approaches is provided and their obtention is discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13326-017-0125-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6417188", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043573", 
            "issn": [
              "2041-1480"
            ], 
            "name": "Journal of Biomedical Semantics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Learning from biomedical linked data to suggest valid pharmacogenes", 
        "pagination": "16", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a0fa7db5be3c8ed342e9799c1f3b56129760868d0b6c25314d489b5c81e1a49d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28427468"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101531992"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13326-017-0125-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084954536"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13326-017-0125-1", 
          "https://app.dimensions.ai/details/publication/pub.1084954536"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13326-017-0125-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13326-017-0125-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13326-017-0125-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13326-017-0125-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13326-017-0125-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      21 PREDICATES      84 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13326-017-0125-1 schema:about N1f2e3d3413de4decaf34cb953ef5d4c2
    2 N2fc3ec8f93704016a4b7b77f92613fec
    3 N3c94583c973f48009ae237da780399a6
    4 N444f220f74634985b5b36a350fa433ec
    5 N4b1d7abc68584c57ac5578db216db9a8
    6 N94c11b0d8ab4458aa7828acdb3861f51
    7 N98384d04b6a1461ab56644ed38cf4ed6
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 schema:author Ncd53e3eb7654425e84f044996c3ebfd2
    11 schema:citation sg:pub.10.1007/978-1-4419-7046-6_36
    12 sg:pub.10.1007/978-3-642-04930-9_41
    13 sg:pub.10.1007/978-3-642-13486-9_21
    14 sg:pub.10.1007/978-3-642-15567-3_3
    15 sg:pub.10.1007/978-3-642-21034-1_4
    16 sg:pub.10.1007/978-3-642-21295-6_13
    17 sg:pub.10.1007/978-3-642-25073-6_45
    18 sg:pub.10.1007/978-3-642-30284-8_16
    19 sg:pub.10.1007/978-3-642-38288-8_14
    20 sg:pub.10.1007/978-3-642-40988-2_39
    21 sg:pub.10.1007/s10994-008-5089-z
    22 sg:pub.10.1023/a:1010933404324
    23 sg:pub.10.1038/clpt.2009.42
    24 sg:pub.10.1038/clpt.2012.96
    25 sg:pub.10.1038/tpj.2010.87
    26 sg:pub.10.1186/1758-2946-3-19
    27 sg:pub.10.1186/2041-1480-2-s2-s10
    28 https://app.dimensions.ai/details/publication/pub.1077983687
    29 https://doi.org/10.1016/j.artint.2013.06.003
    30 https://doi.org/10.1016/j.websem.2012.02.003
    31 https://doi.org/10.1016/j.websem.2015.08.002
    32 https://doi.org/10.1038/msb.2009.98
    33 https://doi.org/10.1056/nejmp1314529
    34 https://doi.org/10.1093/bib/bbl025
    35 https://doi.org/10.1093/bib/bbn056
    36 https://doi.org/10.1093/bib/bbp024
    37 https://doi.org/10.1093/bioinformatics/bts350
    38 https://doi.org/10.1093/bioinformatics/btt765
    39 https://doi.org/10.1093/database/bav028
    40 https://doi.org/10.1093/nar/gkm958
    41 https://doi.org/10.1093/nar/gkp355
    42 https://doi.org/10.1093/nar/gkr811
    43 https://doi.org/10.1093/nar/gkt1113
    44 https://doi.org/10.1093/nar/gkv1075
    45 https://doi.org/10.1093/nar/gkv1165
    46 https://doi.org/10.1093/nar/gkv978
    47 https://doi.org/10.1097/jto.0b013e318200f415
    48 https://doi.org/10.1109/icdm.2002.1184038
    49 https://doi.org/10.1142/9789814366496_0040
    50 https://doi.org/10.1142/9789814583220_0032
    51 https://doi.org/10.1158/1535-7163.mct-07-0567
    52 https://doi.org/10.1161/circgenetics.113.000106
    53 https://doi.org/10.2217/17410541.2.4.325
    54 https://doi.org/10.2217/pgs.10.136
    55 https://doi.org/10.2217/pgs.11.179
    56 https://doi.org/10.2217/pgs.12.54
    57 https://doi.org/10.2217/pgs.13.177
    58 https://doi.org/10.4018/jswis.2009081901
    59 schema:datePublished 2017-12
    60 schema:datePublishedReg 2017-12-01
    61 schema:description BACKGROUND: A standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, only molecular networks or the biomedical literature were used, whereas many other resources are available. METHOD: We propose here to consume a diverse and larger set of resources using linked data related either to genes, drugs or diseases. One of the advantages of linked data is that they are built on a standard framework that facilitates the joint use of various sources, and thus facilitates considering features of various origins. We propose a selection and linkage of data sources relevant to pharmacogenomics, including for example DisGeNET and Clinvar. We use machine learning to identify and prioritize pharmacogenes that are the most probably valid, considering the selected linked data. This identification relies on the classification of gene-drug pairs as either pharmacogenomically associated or not and was experimented with two machine learning methods -random forest and graph kernel-, which results are compared in this article. RESULTS: We assembled a set of linked data relative to pharmacogenomics, of 2,610,793 triples, coming from six distinct resources. Learning from these data, random forest enables identifying valid pharmacogenes with a F-measure of 0.73, on a 10 folds cross-validation, whereas graph kernel achieves a F-measure of 0.81. A list of top candidates proposed by both approaches is provided and their obtention is discussed.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf Ne8bbf89a4f42474ab2a66b7d1b4e8156
    66 Neb7429c884e04a9890a3093fe5513a67
    67 sg:journal.1043573
    68 schema:name Learning from biomedical linked data to suggest valid pharmacogenes
    69 schema:pagination 16
    70 schema:productId N0d4a65c9fc684f3885a24afca83c3182
    71 N7d80f75ee51741969e7e1fbb7a16608e
    72 Nb98605f0a06345bc89f5dd418941b2e7
    73 Nce5433c09c44428c87f88df9c37331d1
    74 Ndb0522c7efa2477bae4b87703d0b3af5
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084954536
    76 https://doi.org/10.1186/s13326-017-0125-1
    77 schema:sdDatePublished 2019-04-11T10:21
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nb6dd80cd366b4f609171bcbbf492b7c0
    80 schema:url https://link.springer.com/10.1186%2Fs13326-017-0125-1
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N0bd2005935f34da3bf50b13b3aa570b6 rdf:first sg:person.0636436260.10
    85 rdf:rest N865ee79c5df64407b05fd546ee59b925
    86 N0d4a65c9fc684f3885a24afca83c3182 schema:name readcube_id
    87 schema:value a0fa7db5be3c8ed342e9799c1f3b56129760868d0b6c25314d489b5c81e1a49d
    88 rdf:type schema:PropertyValue
    89 N12a8086baf0c4257b1f004918c7bcd58 rdf:first sg:person.012273324713.07
    90 rdf:rest N0bd2005935f34da3bf50b13b3aa570b6
    91 N1f2e3d3413de4decaf34cb953ef5d4c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Data Mining
    93 rdf:type schema:DefinedTerm
    94 N2fc3ec8f93704016a4b7b77f92613fec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Pharmacogenetics
    96 rdf:type schema:DefinedTerm
    97 N3962665348334ca69db4347ae9c90600 rdf:first Nc59dab92e7a04deb97c55c86e0125c08
    98 rdf:rest N12a8086baf0c4257b1f004918c7bcd58
    99 N3c94583c973f48009ae237da780399a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Computational Biology
    101 rdf:type schema:DefinedTerm
    102 N444f220f74634985b5b36a350fa433ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Phenotype
    104 rdf:type schema:DefinedTerm
    105 N4b1d7abc68584c57ac5578db216db9a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Computer Graphics
    107 rdf:type schema:DefinedTerm
    108 N68bfb70e71934f2c96cf5e6d5f6ac068 rdf:first Ne2c5f23cb32f416a89583c08b2816270
    109 rdf:rest N3962665348334ca69db4347ae9c90600
    110 N7d80f75ee51741969e7e1fbb7a16608e schema:name dimensions_id
    111 schema:value pub.1084954536
    112 rdf:type schema:PropertyValue
    113 N865ee79c5df64407b05fd546ee59b925 rdf:first sg:person.01222343441.55
    114 rdf:rest rdf:nil
    115 N94c11b0d8ab4458aa7828acdb3861f51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Machine Learning
    117 rdf:type schema:DefinedTerm
    118 N98384d04b6a1461ab56644ed38cf4ed6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Semantic Web
    120 rdf:type schema:DefinedTerm
    121 Nb6dd80cd366b4f609171bcbbf492b7c0 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 Nb98605f0a06345bc89f5dd418941b2e7 schema:name nlm_unique_id
    124 schema:value 101531992
    125 rdf:type schema:PropertyValue
    126 Nc59dab92e7a04deb97c55c86e0125c08 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
    127 schema:familyName Da Silva
    128 schema:givenName Sébastien
    129 rdf:type schema:Person
    130 Ncd53e3eb7654425e84f044996c3ebfd2 rdf:first Ncf44d8094ac54bdda1cf9bbef89627fb
    131 rdf:rest N68bfb70e71934f2c96cf5e6d5f6ac068
    132 Nce5433c09c44428c87f88df9c37331d1 schema:name pubmed_id
    133 schema:value 28427468
    134 rdf:type schema:PropertyValue
    135 Ncf44d8094ac54bdda1cf9bbef89627fb schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
    136 schema:familyName Dalleau
    137 schema:givenName Kevin
    138 rdf:type schema:Person
    139 Ndb0522c7efa2477bae4b87703d0b3af5 schema:name doi
    140 schema:value 10.1186/s13326-017-0125-1
    141 rdf:type schema:PropertyValue
    142 Ne2c5f23cb32f416a89583c08b2816270 schema:affiliation https://www.grid.ac/institutes/grid.473477.4
    143 schema:familyName Marzougui
    144 schema:givenName Yassine
    145 rdf:type schema:Person
    146 Ne8bbf89a4f42474ab2a66b7d1b4e8156 schema:issueNumber 1
    147 rdf:type schema:PublicationIssue
    148 Neb7429c884e04a9890a3093fe5513a67 schema:volumeNumber 8
    149 rdf:type schema:PublicationVolume
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Genetics
    155 rdf:type schema:DefinedTerm
    156 sg:grant.6417188 http://pending.schema.org/fundedItem sg:pub.10.1186/s13326-017-0125-1
    157 rdf:type schema:MonetaryGrant
    158 sg:journal.1043573 schema:issn 2041-1480
    159 schema:name Journal of Biomedical Semantics
    160 rdf:type schema:Periodical
    161 sg:person.01222343441.55 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
    162 schema:familyName Coulet
    163 schema:givenName Adrien
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222343441.55
    165 rdf:type schema:Person
    166 sg:person.012273324713.07 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
    167 schema:familyName Ringot
    168 schema:givenName Patrice
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012273324713.07
    170 rdf:type schema:Person
    171 sg:person.0636436260.10 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
    172 schema:familyName Ndiaye
    173 schema:givenName Ndeye Coumba
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636436260.10
    175 rdf:type schema:Person
    176 sg:pub.10.1007/978-1-4419-7046-6_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009091349
    177 https://doi.org/10.1007/978-1-4419-7046-6_36
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/978-3-642-04930-9_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041594463
    180 https://doi.org/10.1007/978-3-642-04930-9_41
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/978-3-642-13486-9_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024958425
    183 https://doi.org/10.1007/978-3-642-13486-9_21
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/978-3-642-15567-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049701313
    186 https://doi.org/10.1007/978-3-642-15567-3_3
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/978-3-642-21034-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016266430
    189 https://doi.org/10.1007/978-3-642-21034-1_4
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/978-3-642-21295-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040427235
    192 https://doi.org/10.1007/978-3-642-21295-6_13
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/978-3-642-25073-6_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000871135
    195 https://doi.org/10.1007/978-3-642-25073-6_45
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/978-3-642-30284-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038167434
    198 https://doi.org/10.1007/978-3-642-30284-8_16
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/978-3-642-38288-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046984378
    201 https://doi.org/10.1007/978-3-642-38288-8_14
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/978-3-642-40988-2_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006632788
    204 https://doi.org/10.1007/978-3-642-40988-2_39
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10994-008-5089-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039278711
    207 https://doi.org/10.1007/s10994-008-5089-z
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    210 https://doi.org/10.1023/a:1010933404324
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/clpt.2009.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046077944
    213 https://doi.org/10.1038/clpt.2009.42
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/clpt.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042146639
    216 https://doi.org/10.1038/clpt.2012.96
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/tpj.2010.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034584832
    219 https://doi.org/10.1038/tpj.2010.87
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/1758-2946-3-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034947266
    222 https://doi.org/10.1186/1758-2946-3-19
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/2041-1480-2-s2-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023199789
    225 https://doi.org/10.1186/2041-1480-2-s2-s10
    226 rdf:type schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1077983687 schema:CreativeWork
    228 https://doi.org/10.1016/j.artint.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049027564
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.websem.2012.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000616485
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.websem.2015.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004505900
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1038/msb.2009.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038070182
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1056/nejmp1314529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028605831
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/bib/bbl025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013689192
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/bib/bbn056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004892751
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/bib/bbp024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032575865
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/bioinformatics/bts350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243672
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/bioinformatics/btt765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332544
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/database/bav028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016887040
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/nar/gkm958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603670
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/nar/gkp355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029244124
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/nar/gkr811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014062999
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkv1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035455769
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkv1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829499
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkv978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010688117
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1097/jto.0b013e318200f415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011120861
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1109/icdm.2002.1184038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094010722
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1142/9789814366496_0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049687001
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1142/9789814583220_0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043741119
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1158/1535-7163.mct-07-0567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849904
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1161/circgenetics.113.000106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035750901
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.2217/17410541.2.4.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041524217
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.2217/pgs.10.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037281435
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.2217/pgs.11.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008222769
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.2217/pgs.12.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018903459
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.2217/pgs.13.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023023868
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.4018/jswis.2009081901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005783792
    287 rdf:type schema:CreativeWork
    288 https://www.grid.ac/institutes/grid.29172.3f schema:alternateName University of Lorraine
    289 schema:name LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France
    290 UMR U1122 IGE-PCV (INSERM, University of Lorraine), 30 Rue Lionnois, Nancy, France
    291 rdf:type schema:Organization
    292 https://www.grid.ac/institutes/grid.473477.4 schema:alternateName École Nationale Supérieure des Mines de Nancy
    293 schema:name Ecole nationale supérieure des mines de Nancy, Campus Artem, Nancy, France
    294 LORIA (CNRS, Inria Nancy-Grand Est, University of Lorraine), Campus Scientifique, Nancy, France
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...