Ambiguity and variability of database and software names in bioinformatics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06-29

AUTHORS

Geraint Duck, Aleksandar Kovacevic, David L. Robertson, Robert Stevens, Goran Nenadic

ABSTRACT

BACKGROUND: There are numerous options available to achieve various tasks in bioinformatics, but until recently, there were no tools that could systematically identify mentions of databases and tools within the literature. In this paper we explore the variability and ambiguity of database and software name mentions and compare dictionary and machine learning approaches to their identification. RESULTS: Through the development and analysis of a corpus of 60 full-text documents manually annotated at the mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25 full-text documents, a baseline dictionary look-up achieved an F-score of 46 %, highlighting not only variability and ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an F-score of 63 % (with precision of 74 %) and 70 % (with precision of 83 %) for strict and lenient matching respectively. We characterise the issues with various mention types and propose potential ways of capturing additional database and software mentions in the literature. CONCLUSIONS: Our analyses show that identification of mentions of databases and tools is a challenging task that cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows improvement and promise (primarily in precision), more contextual information needs to be taken into account to achieve a good degree of accuracy. More... »

PAGES

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13326-015-0026-0

DOI

http://dx.doi.org/10.1186/s13326-015-0026-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018749733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26131352


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duck", 
        "givenName": "Geraint", 
        "id": "sg:person.01156710274.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710274.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia", 
          "id": "http://www.grid.ac/institutes/grid.10822.39", 
          "name": [
            "Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovacevic", 
        "givenName": "Aleksandar", 
        "id": "sg:person.01222650751.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222650751.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robertson", 
        "givenName": "David L.", 
        "id": "sg:person.0772431062.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772431062.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Robert", 
        "id": "sg:person.0653547307.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK", 
            "Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nenadic", 
        "givenName": "Goran", 
        "id": "sg:person.01070526367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070526367.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-11-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017592817", 
          "https://doi.org/10.1186/1471-2105-11-85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-s9-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010623958", 
          "https://doi.org/10.1186/1471-2105-8-s9-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015385212", 
          "https://doi.org/10.1186/1471-2105-8-287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010333150", 
          "https://doi.org/10.1186/1471-2105-9-359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010358454", 
          "https://doi.org/10.1186/1471-2105-10-320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-s1-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041047351", 
          "https://doi.org/10.1186/1471-2105-6-s1-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008888034", 
          "https://doi.org/10.1186/1471-2105-14-194"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-29", 
    "datePublishedReg": "2015-06-29", 
    "description": "BACKGROUND: There are numerous options available to achieve various tasks in bioinformatics, but until recently, there were no tools that could systematically identify mentions of databases and tools within the literature. In this paper we explore the variability and ambiguity of database and software name mentions and compare dictionary and machine learning approaches to their identification.\nRESULTS: Through the development and analysis of a corpus of 60 full-text documents manually annotated at the mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25 full-text documents, a baseline dictionary look-up achieved an F-score of 46\u00a0%, highlighting not only variability and ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an F-score of 63\u00a0% (with precision of 74\u00a0%) and 70\u00a0% (with precision of 83\u00a0%) for strict and lenient matching respectively. We characterise the issues with various mention types and propose potential ways of capturing additional database and software mentions in the literature.\nCONCLUSIONS: Our analyses show that identification of mentions of databases and tools is a challenging task that cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows improvement and promise (primarily in precision), more contextual information needs to be taken into account to achieve a good degree of accuracy.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13326-015-0026-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "full-text documents", 
      "software mentions", 
      "identification of mentions", 
      "machine learning approaches", 
      "more contextual information", 
      "software names", 
      "resource repository", 
      "learning approach", 
      "contextual information", 
      "mention types", 
      "mention level", 
      "challenging task", 
      "name mentions", 
      "test set", 
      "additional databases", 
      "bioinformatics", 
      "database", 
      "task", 
      "documents", 
      "show improvement", 
      "new resources", 
      "tool", 
      "extensive number", 
      "repository", 
      "machine", 
      "ambiguity", 
      "matching", 
      "dictionary", 
      "numerous options", 
      "corpus", 
      "accuracy", 
      "good degree", 
      "information", 
      "set", 
      "resources", 
      "mention", 
      "issues", 
      "potential way", 
      "way", 
      "identification", 
      "improvement", 
      "name", 
      "number", 
      "high variability", 
      "literature", 
      "analysis", 
      "development", 
      "promise", 
      "account", 
      "types", 
      "options", 
      "variability", 
      "degree", 
      "scores", 
      "levels", 
      "baseline", 
      "approach", 
      "paper", 
      "mentions of databases", 
      "ambiguity of database", 
      "software name mentions", 
      "lenient matching", 
      "machine learning shows improvement", 
      "learning shows improvement", 
      "variability of database"
    ], 
    "name": "Ambiguity and variability of database and software names in bioinformatics", 
    "pagination": "29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018749733"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13326-015-0026-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26131352"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13326-015-0026-0", 
      "https://app.dimensions.ai/details/publication/pub.1018749733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_668.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13326-015-0026-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0026-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0026-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0026-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0026-0'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      22 PREDICATES      100 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13326-015-0026-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0914a4a877b24cab8c4d342c42aae8dc
4 schema:citation sg:pub.10.1038/75556
5 sg:pub.10.1186/1471-2105-10-320
6 sg:pub.10.1186/1471-2105-11-85
7 sg:pub.10.1186/1471-2105-14-194
8 sg:pub.10.1186/1471-2105-6-s1-s1
9 sg:pub.10.1186/1471-2105-8-287
10 sg:pub.10.1186/1471-2105-8-s9-s5
11 sg:pub.10.1186/1471-2105-9-359
12 sg:pub.10.1186/gb-2004-5-10-r80
13 schema:datePublished 2015-06-29
14 schema:datePublishedReg 2015-06-29
15 schema:description BACKGROUND: There are numerous options available to achieve various tasks in bioinformatics, but until recently, there were no tools that could systematically identify mentions of databases and tools within the literature. In this paper we explore the variability and ambiguity of database and software name mentions and compare dictionary and machine learning approaches to their identification. RESULTS: Through the development and analysis of a corpus of 60 full-text documents manually annotated at the mention level, we report high variability and ambiguity in database and software mentions. On a test set of 25 full-text documents, a baseline dictionary look-up achieved an F-score of 46 %, highlighting not only variability and ambiguity but also the extensive number of new resources introduced. A machine learning approach achieved an F-score of 63 % (with precision of 74 %) and 70 % (with precision of 83 %) for strict and lenient matching respectively. We characterise the issues with various mention types and propose potential ways of capturing additional database and software mentions in the literature. CONCLUSIONS: Our analyses show that identification of mentions of databases and tools is a challenging task that cannot be achieved by relying on current manually-curated resource repositories. Although machine learning shows improvement and promise (primarily in precision), more contextual information needs to be taken into account to achieve a good degree of accuracy.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N0df57811fa004aea82b6e5112c8e61c0
20 Nac6c9978723d46cf8d427ef8056061df
21 sg:journal.1043573
22 schema:keywords account
23 accuracy
24 additional databases
25 ambiguity
26 ambiguity of database
27 analysis
28 approach
29 baseline
30 bioinformatics
31 challenging task
32 contextual information
33 corpus
34 database
35 degree
36 development
37 dictionary
38 documents
39 extensive number
40 full-text documents
41 good degree
42 high variability
43 identification
44 identification of mentions
45 improvement
46 information
47 issues
48 learning approach
49 learning shows improvement
50 lenient matching
51 levels
52 literature
53 machine
54 machine learning approaches
55 machine learning shows improvement
56 matching
57 mention
58 mention level
59 mention types
60 mentions of databases
61 more contextual information
62 name
63 name mentions
64 new resources
65 number
66 numerous options
67 options
68 paper
69 potential way
70 promise
71 repository
72 resource repository
73 resources
74 scores
75 set
76 show improvement
77 software mentions
78 software name mentions
79 software names
80 task
81 test set
82 tool
83 types
84 variability
85 variability of database
86 way
87 schema:name Ambiguity and variability of database and software names in bioinformatics
88 schema:pagination 29
89 schema:productId N93e9e9ca76bf47f79222b239d5f27f96
90 Na93f16baf38542a7be5fc3cd96011bec
91 Ndccb220f437540ed8c2b11c8839790fa
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018749733
93 https://doi.org/10.1186/s13326-015-0026-0
94 schema:sdDatePublished 2021-12-01T19:33
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nd02fac78710142c5a80beaf03d61e93c
97 schema:url https://doi.org/10.1186/s13326-015-0026-0
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0914a4a877b24cab8c4d342c42aae8dc rdf:first sg:person.01156710274.33
102 rdf:rest N7acad649cc2840069d288b21e445ddd0
103 N0adb0ddb4fee46d1a4321a4bdba53458 rdf:first sg:person.0772431062.48
104 rdf:rest N657692e2137e4a9fa206b5709de08d54
105 N0df57811fa004aea82b6e5112c8e61c0 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N657692e2137e4a9fa206b5709de08d54 rdf:first sg:person.0653547307.62
108 rdf:rest N8366839b1e144cc8bc18da138def4bd3
109 N7acad649cc2840069d288b21e445ddd0 rdf:first sg:person.01222650751.73
110 rdf:rest N0adb0ddb4fee46d1a4321a4bdba53458
111 N8366839b1e144cc8bc18da138def4bd3 rdf:first sg:person.01070526367.22
112 rdf:rest rdf:nil
113 N93e9e9ca76bf47f79222b239d5f27f96 schema:name dimensions_id
114 schema:value pub.1018749733
115 rdf:type schema:PropertyValue
116 Na93f16baf38542a7be5fc3cd96011bec schema:name doi
117 schema:value 10.1186/s13326-015-0026-0
118 rdf:type schema:PropertyValue
119 Nac6c9978723d46cf8d427ef8056061df schema:volumeNumber 6
120 rdf:type schema:PublicationVolume
121 Nd02fac78710142c5a80beaf03d61e93c schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ndccb220f437540ed8c2b11c8839790fa schema:name pubmed_id
124 schema:value 26131352
125 rdf:type schema:PropertyValue
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:journal.1043573 schema:issn 2041-1480
133 schema:name Journal of Biomedical Semantics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01070526367.22 schema:affiliation grid-institutes:grid.5379.8
137 schema:familyName Nenadic
138 schema:givenName Goran
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070526367.22
140 rdf:type schema:Person
141 sg:person.01156710274.33 schema:affiliation grid-institutes:grid.5379.8
142 schema:familyName Duck
143 schema:givenName Geraint
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710274.33
145 rdf:type schema:Person
146 sg:person.01222650751.73 schema:affiliation grid-institutes:grid.10822.39
147 schema:familyName Kovacevic
148 schema:givenName Aleksandar
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222650751.73
150 rdf:type schema:Person
151 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
152 schema:familyName Stevens
153 schema:givenName Robert
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
155 rdf:type schema:Person
156 sg:person.0772431062.48 schema:affiliation grid-institutes:grid.5379.8
157 schema:familyName Robertson
158 schema:givenName David L.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772431062.48
160 rdf:type schema:Person
161 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
162 https://doi.org/10.1038/75556
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/1471-2105-10-320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010358454
165 https://doi.org/10.1186/1471-2105-10-320
166 rdf:type schema:CreativeWork
167 sg:pub.10.1186/1471-2105-11-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017592817
168 https://doi.org/10.1186/1471-2105-11-85
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2105-14-194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008888034
171 https://doi.org/10.1186/1471-2105-14-194
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-6-s1-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041047351
174 https://doi.org/10.1186/1471-2105-6-s1-s1
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1471-2105-8-287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015385212
177 https://doi.org/10.1186/1471-2105-8-287
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1471-2105-8-s9-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010623958
180 https://doi.org/10.1186/1471-2105-8-s9-s5
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/1471-2105-9-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010333150
183 https://doi.org/10.1186/1471-2105-9-359
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
186 https://doi.org/10.1186/gb-2004-5-10-r80
187 rdf:type schema:CreativeWork
188 grid-institutes:grid.10822.39 schema:alternateName Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
189 schema:name Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
190 rdf:type schema:Organization
191 grid-institutes:grid.5379.8 schema:alternateName Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
192 Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
193 School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
194 schema:name Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT UK
195 Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
196 School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...