Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Christopher S Funk, Indika Kahanda, Asa Ben-Hur, Karin M Verspoor

ABSTRACT

Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13326-015-0006-4

DOI

http://dx.doi.org/10.1186/s13326-015-0006-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051473041

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26005564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Anschutz Medical Campus", 
          "id": "https://www.grid.ac/institutes/grid.430503.1", 
          "name": [
            "Computational Bioscience Program, University of Colorado School of Medicine, 80045, Aurora, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funk", 
        "givenName": "Christopher S", 
        "id": "sg:person.01142564764.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142564764.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Computer Science, Colorado State University, 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahanda", 
        "givenName": "Indika", 
        "id": "sg:person.01365060341.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365060341.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado State University", 
          "id": "https://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Department of Computer Science, Colorado State University, 80523, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Hur", 
        "givenName": "Asa", 
        "id": "sg:person.01242755504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Computing and Information Systems, University of Melbourne, 3010, Parkville, Victoria, Australia", 
            "Health and Biomedical Informatics Centre, University of Melbourne, 3010, Parkville, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verspoor", 
        "givenName": "Karin M", 
        "id": "sg:person.01372713104.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372713104.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m111.280271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005018721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007665196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0709-0_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015535166", 
          "https://doi.org/10.1007/978-1-4939-0709-0_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s3-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020835861", 
          "https://doi.org/10.1186/1471-2105-14-s3-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s3-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020835861", 
          "https://doi.org/10.1186/1471-2105-14-s3-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021645328", 
          "https://doi.org/10.1186/1471-2105-13-161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025619906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025619906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031648236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034420642", 
          "https://doi.org/10.1186/1471-2105-15-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034420642", 
          "https://doi.org/10.1186/1471-2105-15-59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035901433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100259", 
          "https://doi.org/10.1038/nmeth.2340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.062184006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048979239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s3-s14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049948850", 
          "https://doi.org/10.1186/1471-2105-14-s3-s14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s3-s14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049948850", 
          "https://doi.org/10.1186/1471-2105-14-s3-s14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bau086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050483976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052987047", 
          "https://doi.org/10.1186/1471-2105-13-207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053353124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053353124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219720010004744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063004958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078725529", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a \"medium-throughput\" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13326-015-0006-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3111397", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681199", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3111370", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5322564b82cef2fe5c14ea7d9da03b6d371cf2ebd6c5e12e5f111b8c88d6707"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26005564"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13326-015-0006-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051473041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13326-015-0006-4", 
      "https://app.dimensions.ai/details/publication/pub.1051473041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs13326-015-0006-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0006-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0006-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0006-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13326-015-0006-4'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      48 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13326-015-0006-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N88d8fb1bf77d420c8929e21948e21e6e
4 schema:citation sg:pub.10.1007/978-1-4939-0709-0_6
5 sg:pub.10.1038/75556
6 sg:pub.10.1038/nmeth.2340
7 sg:pub.10.1186/1471-2105-13-161
8 sg:pub.10.1186/1471-2105-13-207
9 sg:pub.10.1186/1471-2105-14-s3-s10
10 sg:pub.10.1186/1471-2105-14-s3-s14
11 sg:pub.10.1186/1471-2105-15-59
12 https://app.dimensions.ai/details/publication/pub.1078725529
13 https://doi.org/10.1016/j.ymeth.2014.10.027
14 https://doi.org/10.1074/jbc.m111.280271
15 https://doi.org/10.1093/bioinformatics/bth921
16 https://doi.org/10.1093/bioinformatics/bti749
17 https://doi.org/10.1093/bioinformatics/btm229
18 https://doi.org/10.1093/bioinformatics/btt228
19 https://doi.org/10.1093/database/bau086
20 https://doi.org/10.1093/nar/gkh021
21 https://doi.org/10.1110/ps.062184006
22 https://doi.org/10.1142/s0219720010004744
23 schema:datePublished 2015-12
24 schema:datePublishedReg 2015-12-01
25 schema:description Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N9ed25cbdcbf94d9989ae9d8212c8df37
30 Nd531f74cf21a4238aa22cd4dfc111f59
31 sg:journal.1043573
32 schema:name Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct
33 schema:pagination 9
34 schema:productId N1695b62671a14cd19d0f838389657086
35 N483fbe6824524de0a4d0994f7659cea1
36 N595954df0e7140cdaf6ac6b828b838eb
37 Nba65c43c92b645c883a744da450b1408
38 Nca8b376f322c43288e13b77b3e84d183
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051473041
40 https://doi.org/10.1186/s13326-015-0006-4
41 schema:sdDatePublished 2019-04-11T13:08
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N289f0a7a34ff4a45b42fa706f6b5209d
44 schema:url http://link.springer.com/10.1186%2Fs13326-015-0006-4
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1695b62671a14cd19d0f838389657086 schema:name dimensions_id
49 schema:value pub.1051473041
50 rdf:type schema:PropertyValue
51 N289f0a7a34ff4a45b42fa706f6b5209d schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N483fbe6824524de0a4d0994f7659cea1 schema:name nlm_unique_id
54 schema:value 101531992
55 rdf:type schema:PropertyValue
56 N595954df0e7140cdaf6ac6b828b838eb schema:name doi
57 schema:value 10.1186/s13326-015-0006-4
58 rdf:type schema:PropertyValue
59 N88d8fb1bf77d420c8929e21948e21e6e rdf:first sg:person.01142564764.38
60 rdf:rest Nfebaed39f14b4aee8bfac0241dca1711
61 N9ed25cbdcbf94d9989ae9d8212c8df37 schema:volumeNumber 6
62 rdf:type schema:PublicationVolume
63 N9f7fe490bf584266be56b4e67a389b8b rdf:first sg:person.01372713104.04
64 rdf:rest rdf:nil
65 Nba65c43c92b645c883a744da450b1408 schema:name readcube_id
66 schema:value f5322564b82cef2fe5c14ea7d9da03b6d371cf2ebd6c5e12e5f111b8c88d6707
67 rdf:type schema:PropertyValue
68 Nca8b376f322c43288e13b77b3e84d183 schema:name pubmed_id
69 schema:value 26005564
70 rdf:type schema:PropertyValue
71 Nd4478d721f5c4e88a188570012b95f4b rdf:first sg:person.01242755504.30
72 rdf:rest N9f7fe490bf584266be56b4e67a389b8b
73 Nd531f74cf21a4238aa22cd4dfc111f59 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Nfebaed39f14b4aee8bfac0241dca1711 rdf:first sg:person.01365060341.83
76 rdf:rest Nd4478d721f5c4e88a188570012b95f4b
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:grant.2681199 http://pending.schema.org/fundedItem sg:pub.10.1186/s13326-015-0006-4
84 rdf:type schema:MonetaryGrant
85 sg:grant.3111370 http://pending.schema.org/fundedItem sg:pub.10.1186/s13326-015-0006-4
86 rdf:type schema:MonetaryGrant
87 sg:grant.3111397 http://pending.schema.org/fundedItem sg:pub.10.1186/s13326-015-0006-4
88 rdf:type schema:MonetaryGrant
89 sg:journal.1043573 schema:issn 2041-1480
90 schema:name Journal of Biomedical Semantics
91 rdf:type schema:Periodical
92 sg:person.01142564764.38 schema:affiliation https://www.grid.ac/institutes/grid.430503.1
93 schema:familyName Funk
94 schema:givenName Christopher S
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142564764.38
96 rdf:type schema:Person
97 sg:person.01242755504.30 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
98 schema:familyName Ben-Hur
99 schema:givenName Asa
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242755504.30
101 rdf:type schema:Person
102 sg:person.01365060341.83 schema:affiliation https://www.grid.ac/institutes/grid.47894.36
103 schema:familyName Kahanda
104 schema:givenName Indika
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365060341.83
106 rdf:type schema:Person
107 sg:person.01372713104.04 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
108 schema:familyName Verspoor
109 schema:givenName Karin M
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372713104.04
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4939-0709-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015535166
113 https://doi.org/10.1007/978-1-4939-0709-0_6
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
116 https://doi.org/10.1038/75556
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nmeth.2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100259
119 https://doi.org/10.1038/nmeth.2340
120 rdf:type schema:CreativeWork
121 sg:pub.10.1186/1471-2105-13-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021645328
122 https://doi.org/10.1186/1471-2105-13-161
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/1471-2105-13-207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052987047
125 https://doi.org/10.1186/1471-2105-13-207
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/1471-2105-14-s3-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020835861
128 https://doi.org/10.1186/1471-2105-14-s3-s10
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1471-2105-14-s3-s14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049948850
131 https://doi.org/10.1186/1471-2105-14-s3-s14
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1471-2105-15-59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034420642
134 https://doi.org/10.1186/1471-2105-15-59
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1078725529 schema:CreativeWork
137 https://doi.org/10.1016/j.ymeth.2014.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025619906
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1074/jbc.m111.280271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005018721
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1093/bioinformatics/bth921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031648236
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/bioinformatics/bti749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948219
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/bioinformatics/btm229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035901433
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/btt228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053353124
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/database/bau086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050483976
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/nar/gkh021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007665196
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1110/ps.062184006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048979239
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1142/s0219720010004744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004958
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
158 schema:name Department of Computing and Information Systems, University of Melbourne, 3010, Parkville, Victoria, Australia
159 Health and Biomedical Informatics Centre, University of Melbourne, 3010, Parkville, Victoria, Australia
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.430503.1 schema:alternateName University of Colorado Anschutz Medical Campus
162 schema:name Computational Bioscience Program, University of Colorado School of Medicine, 80045, Aurora, CO, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.47894.36 schema:alternateName Colorado State University
165 schema:name Department of Computer Science, Colorado State University, 80523, Fort Collins, CO, USA
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...