Criteria for selecting microhaplotypes: mixture detection and deconvolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Kenneth K Kidd, William C Speed

ABSTRACT

BACKGROUND: DNA sequencing is likely to become a standard typing method in forensics in the near future. We define a microhaplotype to be a locus with two or more single nucleotide polymorphisms (SNPs) that occur within a short segment of DNA (e.g., 200 bp) that can be covered by a single sequence run and collectively define a multiallelic locus. Microhaplotypes can be highly informative for many forensic questions, including detection of mixtures of two or more sources in a DNA sample, a common problem in forensic practice. RESULTS: When all alleles are equally frequent, the probability of detecting three or more alleles in a mixture is at maximum. The classical population genetics concept of effective number of alleles at a locus, termed Ae, converts the unequal allele frequencies at a locus into a value that is equivalent to some number of equally frequent alleles, allowing microhaplotype loci to be ranked. The expectations for the ability to qualitatively detect mixtures are given for different integer values of Ae, and the cumulative probabilities of detecting mixtures based on testing multiple microhaps are shown to exceed 95% with as few as five loci with average Ae values of even slightly greater than 3.0. CONCLUSIONS: Microhaplotypes with Ae values of >3 will be exceedingly useful in ordinary forensic practice. Based on our studies, 3-SNP microhaplotypes will sometimes meet this criterion, but 4-SNP microhaplotypes can even exceed this criterion and have values >4. More... »

PAGES

1

References to SciGraph publications

Journal

TITLE

Investigative Genetics

ISSUE

1

VOLUME

6

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13323-014-0018-3

    DOI

    http://dx.doi.org/10.1186/s13323-014-0018-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011942856

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25750707


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, 06520-8005, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kidd", 
            "givenName": "Kenneth K", 
            "id": "sg:person.01264224741.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, 06520-8005, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Speed", 
            "givenName": "William C", 
            "id": "sg:person.01306046677.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.fsigen.2014.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000286706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0029684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000812861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2013.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002554911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-012-0667-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003756044", 
              "https://doi.org/10.1007/s00414-012-0667-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2013.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007530628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2012.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010789312", 
              "https://doi.org/10.1038/ejhg.2012.69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2014.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012366254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-011-1110-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018786701", 
              "https://doi.org/10.1007/s00439-011-1110-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-011-1110-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018786701", 
              "https://doi.org/10.1007/s00439-011-1110-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0771-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027046407", 
              "https://doi.org/10.1007/s00439-009-0771-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0771-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027046407", 
              "https://doi.org/10.1007/s00439-009-0771-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0771-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027046407", 
              "https://doi.org/10.1007/s00439-009-0771-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-009-0771-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027046407", 
              "https://doi.org/10.1007/s00439-009-0771-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/319501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027413555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2012.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028316969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-012-0721-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034155456", 
              "https://doi.org/10.1007/s00414-012-0721-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-012-0721-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034155456", 
              "https://doi.org/10.1007/s00414-012-0721-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037825612", 
              "https://doi.org/10.1038/nature06742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ajpa.21560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039909698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2012.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040537605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2012.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040735938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2014.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043534214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.200500671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.200500671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1153717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457378"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "BACKGROUND: DNA sequencing is likely to become a standard typing method in forensics in the near future. We define a microhaplotype to be a locus with two or more single nucleotide polymorphisms (SNPs) that occur within a short segment of DNA (e.g., 200\u00a0bp) that can be covered by a single sequence run and collectively define a multiallelic locus. Microhaplotypes can be highly informative for many forensic questions, including detection of mixtures of two or more sources in a DNA sample, a common problem in forensic practice.\nRESULTS: When all alleles are equally frequent, the probability of detecting three or more alleles in a mixture is at maximum. The classical population genetics concept of effective number of alleles at a locus, termed Ae, converts the unequal allele frequencies at a locus into a value that is equivalent to some number of equally frequent alleles, allowing microhaplotype loci to be ranked. The expectations for the ability to qualitatively detect mixtures are given for different integer values of Ae, and the cumulative probabilities of detecting mixtures based on testing multiple microhaps are shown to exceed 95% with as few as five loci with average Ae values of even slightly greater than 3.0.\nCONCLUSIONS: Microhaplotypes with Ae values of >3 will be exceedingly useful in ordinary forensic practice. Based on our studies, 3-SNP microhaplotypes will sometimes meet this criterion, but 4-SNP microhaplotypes can even exceed this criterion and have values >4.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13323-014-0018-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7602849", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7603876", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044399", 
            "issn": [
              "2041-2223"
            ], 
            "name": "Investigative Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Criteria for selecting microhaplotypes: mixture detection and deconvolution", 
        "pagination": "1", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "38e6f2c3073f8aa4d5f35bbb3bd8ffeb660cc29a013affc0efb71958a5b06272"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25750707"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101546908"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13323-014-0018-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011942856"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13323-014-0018-3", 
          "https://app.dimensions.ai/details/publication/pub.1011942856"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2Fs13323-014-0018-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13323-014-0018-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13323-014-0018-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13323-014-0018-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13323-014-0018-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13323-014-0018-3 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ndb7903d72b8244febb35b95b2c298835
    4 schema:citation sg:pub.10.1007/s00414-012-0667-9
    5 sg:pub.10.1007/s00414-012-0721-7
    6 sg:pub.10.1007/s00439-009-0771-1
    7 sg:pub.10.1007/s00439-011-1110-x
    8 sg:pub.10.1038/ejhg.2012.69
    9 sg:pub.10.1038/nature06742
    10 sg:pub.10.1038/nature09534
    11 https://doi.org/10.1002/ajpa.21560
    12 https://doi.org/10.1002/elps.200500671
    13 https://doi.org/10.1016/j.fsigen.2012.02.012
    14 https://doi.org/10.1016/j.fsigen.2012.07.005
    15 https://doi.org/10.1016/j.fsigen.2012.12.007
    16 https://doi.org/10.1016/j.fsigen.2013.02.010
    17 https://doi.org/10.1016/j.fsigen.2013.07.010
    18 https://doi.org/10.1016/j.fsigen.2014.01.002
    19 https://doi.org/10.1016/j.fsigen.2014.06.014
    20 https://doi.org/10.1016/j.fsigen.2014.06.017
    21 https://doi.org/10.1086/319501
    22 https://doi.org/10.1126/science.1153717
    23 https://doi.org/10.1371/journal.pone.0029684
    24 schema:datePublished 2015-12
    25 schema:datePublishedReg 2015-12-01
    26 schema:description BACKGROUND: DNA sequencing is likely to become a standard typing method in forensics in the near future. We define a microhaplotype to be a locus with two or more single nucleotide polymorphisms (SNPs) that occur within a short segment of DNA (e.g., 200 bp) that can be covered by a single sequence run and collectively define a multiallelic locus. Microhaplotypes can be highly informative for many forensic questions, including detection of mixtures of two or more sources in a DNA sample, a common problem in forensic practice. RESULTS: When all alleles are equally frequent, the probability of detecting three or more alleles in a mixture is at maximum. The classical population genetics concept of effective number of alleles at a locus, termed Ae, converts the unequal allele frequencies at a locus into a value that is equivalent to some number of equally frequent alleles, allowing microhaplotype loci to be ranked. The expectations for the ability to qualitatively detect mixtures are given for different integer values of Ae, and the cumulative probabilities of detecting mixtures based on testing multiple microhaps are shown to exceed 95% with as few as five loci with average Ae values of even slightly greater than 3.0. CONCLUSIONS: Microhaplotypes with Ae values of >3 will be exceedingly useful in ordinary forensic practice. Based on our studies, 3-SNP microhaplotypes will sometimes meet this criterion, but 4-SNP microhaplotypes can even exceed this criterion and have values >4.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N7ed7d6a106fd4b7da7a1c6c0325a23b4
    31 Nf97382bc5fd04684a3fb9be0f11923b5
    32 sg:journal.1044399
    33 schema:name Criteria for selecting microhaplotypes: mixture detection and deconvolution
    34 schema:pagination 1
    35 schema:productId N707e4e608e544dbb8586f8767e7e35a4
    36 N9b2496d32704495e85a2e8b5ef3586e3
    37 Nad0e98894f894826b56877d9d71b00f3
    38 Nc18ab79581604add9bd81b3b9ae5fc3d
    39 Ndb276a9100f148ff9dcf64daf0fde6a3
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011942856
    41 https://doi.org/10.1186/s13323-014-0018-3
    42 schema:sdDatePublished 2019-04-11T13:07
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nc2ae5dcdaf1243fab89c8f5627228ef4
    45 schema:url http://link.springer.com/10.1186%2Fs13323-014-0018-3
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N707e4e608e544dbb8586f8767e7e35a4 schema:name readcube_id
    50 schema:value 38e6f2c3073f8aa4d5f35bbb3bd8ffeb660cc29a013affc0efb71958a5b06272
    51 rdf:type schema:PropertyValue
    52 N7ed7d6a106fd4b7da7a1c6c0325a23b4 schema:volumeNumber 6
    53 rdf:type schema:PublicationVolume
    54 N9b2496d32704495e85a2e8b5ef3586e3 schema:name pubmed_id
    55 schema:value 25750707
    56 rdf:type schema:PropertyValue
    57 Nad0e98894f894826b56877d9d71b00f3 schema:name nlm_unique_id
    58 schema:value 101546908
    59 rdf:type schema:PropertyValue
    60 Nc18ab79581604add9bd81b3b9ae5fc3d schema:name doi
    61 schema:value 10.1186/s13323-014-0018-3
    62 rdf:type schema:PropertyValue
    63 Nc2ae5dcdaf1243fab89c8f5627228ef4 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ndb276a9100f148ff9dcf64daf0fde6a3 schema:name dimensions_id
    66 schema:value pub.1011942856
    67 rdf:type schema:PropertyValue
    68 Ndb7903d72b8244febb35b95b2c298835 rdf:first sg:person.01264224741.31
    69 rdf:rest Nfdf18654710446499ae401ff567a0ea7
    70 Nf97382bc5fd04684a3fb9be0f11923b5 schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 Nfdf18654710446499ae401ff567a0ea7 rdf:first sg:person.01306046677.16
    73 rdf:rest rdf:nil
    74 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Biological Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Genetics
    79 rdf:type schema:DefinedTerm
    80 sg:grant.7602849 http://pending.schema.org/fundedItem sg:pub.10.1186/s13323-014-0018-3
    81 rdf:type schema:MonetaryGrant
    82 sg:grant.7603876 http://pending.schema.org/fundedItem sg:pub.10.1186/s13323-014-0018-3
    83 rdf:type schema:MonetaryGrant
    84 sg:journal.1044399 schema:issn 2041-2223
    85 schema:name Investigative Genetics
    86 rdf:type schema:Periodical
    87 sg:person.01264224741.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    88 schema:familyName Kidd
    89 schema:givenName Kenneth K
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31
    91 rdf:type schema:Person
    92 sg:person.01306046677.16 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    93 schema:familyName Speed
    94 schema:givenName William C
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306046677.16
    96 rdf:type schema:Person
    97 sg:pub.10.1007/s00414-012-0667-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003756044
    98 https://doi.org/10.1007/s00414-012-0667-9
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s00414-012-0721-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034155456
    101 https://doi.org/10.1007/s00414-012-0721-7
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s00439-009-0771-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027046407
    104 https://doi.org/10.1007/s00439-009-0771-1
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00439-011-1110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018786701
    107 https://doi.org/10.1007/s00439-011-1110-x
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/ejhg.2012.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010789312
    110 https://doi.org/10.1038/ejhg.2012.69
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nature06742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825612
    113 https://doi.org/10.1038/nature06742
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    116 https://doi.org/10.1038/nature09534
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1002/ajpa.21560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039909698
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1002/elps.200500671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314298
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.fsigen.2012.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040537605
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.fsigen.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028316969
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.fsigen.2012.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735938
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.fsigen.2013.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007530628
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.fsigen.2013.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002554911
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.fsigen.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012366254
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.fsigen.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534214
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.fsigen.2014.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000286706
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1086/319501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413555
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1126/science.1153717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457378
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1371/journal.pone.0029684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000812861
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    145 schema:name Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208005, 06520-8005, New Haven, CT, USA
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...