A molecular fragment cheminformatics roadmap for mesoscopic simulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10-04

AUTHORS

Andreas Truszkowski, Mirco Daniel, Hubert Kuhn, Stefan Neumann, Christoph Steinbeck, Achim Zielesny, Matthias Epple

ABSTRACT

BackgroundMesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application.ResultsThe molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted fSMILES) with connected molecular fragments to represent a molecular structure. The fSMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software.ConclusionsMesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences.Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation. More... »

PAGES

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13321-014-0045-3

DOI

http://dx.doi.org/10.1186/s13321-014-0045-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050326719

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25383098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Truszkowski", 
        "givenName": "Andreas", 
        "id": "sg:person.01156445154.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156445154.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.454254.6", 
          "name": [
            "Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Mirco", 
        "id": "sg:person.016332325241.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332325241.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CAM-D Technologies, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CAM-D Technologies, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuhn", 
        "givenName": "Hubert", 
        "id": "sg:person.012147605703.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147605703.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Stefan", 
        "id": "sg:person.01272673554.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272673554.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge/Hinxton, UK", 
          "id": "http://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge/Hinxton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinbeck", 
        "givenName": "Christoph", 
        "id": "sg:person.012610137527.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.454254.6", 
          "name": [
            "Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zielesny", 
        "givenName": "Achim", 
        "id": "sg:person.0615402654.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615402654.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Epple", 
        "givenName": "Matthias", 
        "id": "sg:person.011342402346.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00396-004-1137-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164848", 
          "https://doi.org/10.1007/s00396-004-1137-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0902-646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020170704", 
          "https://doi.org/10.1038/nsb0902-646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-788-l10.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067956776", 
          "https://doi.org/10.1557/proc-788-l10.5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10-04", 
    "datePublishedReg": "2014-10-04", 
    "description": "BackgroundMesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application.ResultsThe molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted fSMILES) with connected molecular fragments to represent a molecular structure. The fSMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software.ConclusionsMesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences.Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13321-014-0045-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042252", 
        "issn": [
          "1758-2946"
        ], 
        "name": "Journal of Cheminformatics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "cheminformatics approaches", 
      "molecular fragments", 
      "quantum chemical ab initio calculations", 
      "building block 2", 
      "large molecular ensembles", 
      "large molecular entities", 
      "mesoscopic simulations", 
      "ab initio calculations", 
      "whole simulation box", 
      "molecular structure", 
      "molecular mechanics", 
      "mesoscopic simulation technique", 
      "molecular ensembles", 
      "line notation", 
      "molecular science", 
      "cheminformatics software", 
      "atom types", 
      "dynamics simulations", 
      "simulation box", 
      "fragment structures", 
      "millions of atoms", 
      "building blocks", 
      "molecular entities", 
      "practical applications", 
      "simulation techniques", 
      "structure", 
      "graphical setup", 
      "cheminformatics", 
      "practical use", 
      "molecules", 
      "atoms", 
      "structure representation", 
      "electrons", 
      "fragments", 
      "properties", 
      "applications", 
      "calculations", 
      "solution", 
      "composition", 
      "structural alignment", 
      "block 2", 
      "layer", 
      "practical usage scenarios", 
      "technique", 
      "block", 
      "simulations", 
      "units", 
      "simulation setup", 
      "ensemble", 
      "use", 
      "method", 
      "hurdles", 
      "accessibility", 
      "setup", 
      "alignment", 
      "approach", 
      "basis", 
      "dynamics", 
      "analysis", 
      "topology", 
      "types", 
      "example", 
      "efficient use", 
      "roadmap", 
      "study", 
      "science", 
      "mechanics", 
      "kernel software", 
      "accelerator", 
      "compartments", 
      "description", 
      "nucleus", 
      "entities", 
      "subtleties", 
      "requirements", 
      "connectivity", 
      "matrix representation", 
      "operation", 
      "millions", 
      "concept", 
      "box", 
      "MFD", 
      "notation", 
      "simulation tasks", 
      "software", 
      "representation", 
      "scenarios", 
      "output", 
      "problem", 
      "task", 
      "usage scenarios", 
      "ventures"
    ], 
    "name": "A molecular fragment cheminformatics roadmap for mesoscopic simulation", 
    "pagination": "45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050326719"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13321-014-0045-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25383098"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13321-014-0045-3", 
      "https://app.dimensions.ai/details/publication/pub.1050326719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_644.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13321-014-0045-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13321-014-0045-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13321-014-0045-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13321-014-0045-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13321-014-0045-3'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      120 URIs      109 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13321-014-0045-3 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author Nd610785e387d4101be256d532caf1a53
4 schema:citation sg:pub.10.1007/s00396-004-1137-9
5 sg:pub.10.1038/nsb0902-646
6 sg:pub.10.1557/proc-788-l10.5
7 schema:datePublished 2014-10-04
8 schema:datePublishedReg 2014-10-04
9 schema:description BackgroundMesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application.ResultsThe molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted fSMILES) with connected molecular fragments to represent a molecular structure. The fSMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software.ConclusionsMesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences.Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N5f09a56e0953420a9bf025373691b328
13 N6ee39a6a33f74c27b342d461ed0f0143
14 sg:journal.1042252
15 schema:keywords MFD
16 ab initio calculations
17 accelerator
18 accessibility
19 alignment
20 analysis
21 applications
22 approach
23 atom types
24 atoms
25 basis
26 block
27 block 2
28 box
29 building block 2
30 building blocks
31 calculations
32 cheminformatics
33 cheminformatics approaches
34 cheminformatics software
35 compartments
36 composition
37 concept
38 connectivity
39 description
40 dynamics
41 dynamics simulations
42 efficient use
43 electrons
44 ensemble
45 entities
46 example
47 fragment structures
48 fragments
49 graphical setup
50 hurdles
51 kernel software
52 large molecular ensembles
53 large molecular entities
54 layer
55 line notation
56 matrix representation
57 mechanics
58 mesoscopic simulation technique
59 mesoscopic simulations
60 method
61 millions
62 millions of atoms
63 molecular ensembles
64 molecular entities
65 molecular fragments
66 molecular mechanics
67 molecular science
68 molecular structure
69 molecules
70 notation
71 nucleus
72 operation
73 output
74 practical applications
75 practical usage scenarios
76 practical use
77 problem
78 properties
79 quantum chemical ab initio calculations
80 representation
81 requirements
82 roadmap
83 scenarios
84 science
85 setup
86 simulation box
87 simulation setup
88 simulation tasks
89 simulation techniques
90 simulations
91 software
92 solution
93 structural alignment
94 structure
95 structure representation
96 study
97 subtleties
98 task
99 technique
100 topology
101 types
102 units
103 usage scenarios
104 use
105 ventures
106 whole simulation box
107 schema:name A molecular fragment cheminformatics roadmap for mesoscopic simulation
108 schema:pagination 45
109 schema:productId N5b7961fe83914920a4f45db9ee41a75a
110 Ne9b10d79ca9747238fc4f66950972d8b
111 Nee9e671ccc5b4ae19cd088e31deac096
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050326719
113 https://doi.org/10.1186/s13321-014-0045-3
114 schema:sdDatePublished 2022-10-01T06:39
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher N64b00218280442cab9b9b91abb1fc19a
117 schema:url https://doi.org/10.1186/s13321-014-0045-3
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N04453f2bd14247ae9e4a77114f85a4ea rdf:first sg:person.012610137527.56
122 rdf:rest N124762ffa9df498cacdd14cf92eeff1c
123 N124762ffa9df498cacdd14cf92eeff1c rdf:first sg:person.0615402654.46
124 rdf:rest Ncb07955d92b64213b4dd2c0810fc2651
125 N18debc3681674de89fc65182c4033530 rdf:first sg:person.01272673554.14
126 rdf:rest N04453f2bd14247ae9e4a77114f85a4ea
127 N5b7961fe83914920a4f45db9ee41a75a schema:name dimensions_id
128 schema:value pub.1050326719
129 rdf:type schema:PropertyValue
130 N5f09a56e0953420a9bf025373691b328 schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 N64b00218280442cab9b9b91abb1fc19a schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N6ee39a6a33f74c27b342d461ed0f0143 schema:volumeNumber 6
135 rdf:type schema:PublicationVolume
136 N7bbf9b0bd2354a21b8525b900d36a358 rdf:first sg:person.012147605703.08
137 rdf:rest N18debc3681674de89fc65182c4033530
138 Ncb07955d92b64213b4dd2c0810fc2651 rdf:first sg:person.011342402346.80
139 rdf:rest rdf:nil
140 Nd610785e387d4101be256d532caf1a53 rdf:first sg:person.01156445154.10
141 rdf:rest Nf4bd3509ddd84633a2f9ae31fc27a2c9
142 Ne9b10d79ca9747238fc4f66950972d8b schema:name doi
143 schema:value 10.1186/s13321-014-0045-3
144 rdf:type schema:PropertyValue
145 Nee9e671ccc5b4ae19cd088e31deac096 schema:name pubmed_id
146 schema:value 25383098
147 rdf:type schema:PropertyValue
148 Nf4bd3509ddd84633a2f9ae31fc27a2c9 rdf:first sg:person.016332325241.06
149 rdf:rest N7bbf9b0bd2354a21b8525b900d36a358
150 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
151 schema:name Chemical Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
154 schema:name Theoretical and Computational Chemistry
155 rdf:type schema:DefinedTerm
156 sg:journal.1042252 schema:issn 1758-2946
157 schema:name Journal of Cheminformatics
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.011342402346.80 schema:affiliation grid-institutes:grid.5718.b
161 schema:familyName Epple
162 schema:givenName Matthias
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011342402346.80
164 rdf:type schema:Person
165 sg:person.01156445154.10 schema:affiliation grid-institutes:grid.5718.b
166 schema:familyName Truszkowski
167 schema:givenName Andreas
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156445154.10
169 rdf:type schema:Person
170 sg:person.012147605703.08 schema:affiliation grid-institutes:None
171 schema:familyName Kuhn
172 schema:givenName Hubert
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147605703.08
174 rdf:type schema:Person
175 sg:person.012610137527.56 schema:affiliation grid-institutes:grid.225360.0
176 schema:familyName Steinbeck
177 schema:givenName Christoph
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56
179 rdf:type schema:Person
180 sg:person.01272673554.14 schema:affiliation grid-institutes:None
181 schema:familyName Neumann
182 schema:givenName Stefan
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272673554.14
184 rdf:type schema:Person
185 sg:person.016332325241.06 schema:affiliation grid-institutes:grid.454254.6
186 schema:familyName Daniel
187 schema:givenName Mirco
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332325241.06
189 rdf:type schema:Person
190 sg:person.0615402654.46 schema:affiliation grid-institutes:grid.454254.6
191 schema:familyName Zielesny
192 schema:givenName Achim
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615402654.46
194 rdf:type schema:Person
195 sg:pub.10.1007/s00396-004-1137-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030164848
196 https://doi.org/10.1007/s00396-004-1137-9
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nsb0902-646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020170704
199 https://doi.org/10.1038/nsb0902-646
200 rdf:type schema:CreativeWork
201 sg:pub.10.1557/proc-788-l10.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067956776
202 https://doi.org/10.1557/proc-788-l10.5
203 rdf:type schema:CreativeWork
204 grid-institutes:None schema:alternateName CAM-D Technologies, Essen, Germany
205 GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany
206 schema:name CAM-D Technologies, Essen, Germany
207 GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany
208 rdf:type schema:Organization
209 grid-institutes:grid.225360.0 schema:alternateName Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge/Hinxton, UK
210 schema:name Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge/Hinxton, UK
211 rdf:type schema:Organization
212 grid-institutes:grid.454254.6 schema:alternateName Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany
213 schema:name Institute for Bioinformatics and Cheminformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany
214 rdf:type schema:Organization
215 grid-institutes:grid.5718.b schema:alternateName Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
216 schema:name Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...