Sex differences in the association of abdominal adipose tissue and anthropometric data with untreated hypertension in a Chinese population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-17

AUTHORS

Youzhou Chen, Zhuoli Zhang, Jihong Wang, Huayi Sun, Xingshan Zhao, Xiaoguang Cheng, Qiong Zhao

ABSTRACT

BackgroundThere are inconsistent interpretations of the interrelationship of adiposity, anthropometric indices, and blood pressure (BP) in hypertensive patients. Additionally, whether these relationships differ between sexes is unknown. We aimed to elucidate the associations of adiposity indices measured using quantitative computed tomography (QCT) with BP and hypertension and to determine the effect of sex on the interrelationship of these parameters in a Chinese population.MethodsAbdominal adipose fat, including the visceral adipose tissue (VAT) area and subcutaneous adipose tissue (SAT) area, was measured by QCT in 1488 patients (514 men, 974 women). Body mass index (BMI), waist circumference (WC), hip circumference (HC), and systolic (SBP) and diastolic BP (DBP) were measured. Pearson correlation coefficients, multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the relationship and potential of adiposity indices to BP and risk of hypertension within sex groups.ResultsMen had significantly greater VAT area but less SAT area than women in hypertensive group. VAT, SAT, and WC were more highly correlated with SBP in men than in women. After controlling for body weight, height, and age, VAT area and WC were positively associated with SBP (VAT: β = 0.309, p < 0.001; WC: β = 0.148, p = 0.001) and DBP (VAT: β = 0.099, p = 0.034; WC: β = 0.198, p = 0.001) in women. VAT area was positively associated with SBP (β = 0.444, p < 0.001) and DBP (β = 0.146, p = 0.021) in men. WC had a significant correlation with an increased risk of hypertension in women but a borderline association in men (p = 0.059) when adjusted for VAT area and SAT area.ConclusionsThe association of abdominal adiposity with hypertension differs qualitatively by sex. WC may be an important determinant of hypertension and may be used for risk stratification for hypertension among Chinese individuals. More... »

PAGES

38

References to SciGraph publications

  • 2008-03. Abdominal obesity and inflammation predicts hypertension among prehypertensive men and women: the ATTICA Study in HEART AND VESSELS
  • 2003-11-25. Sex differences in the relationships of abdominal fat to cardiovascular disease risk among normal-weight white subjects in INTERNATIONAL JOURNAL OF OBESITY
  • 2005-12-13. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children in INTERNATIONAL JOURNAL OF OBESITY
  • 2010-01-12. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study in INTERNATIONAL JOURNAL OF OBESITY
  • 2016-12-01. A indicator of visceral adipose dysfunction to evaluate metabolic health in adult Chinese in SCIENTIFIC REPORTS
  • 2016-12-01. Age and sex-specific associations of anthropometric measures of adiposity with blood pressure and hypertension in India: a cross-sectional study in BMC CARDIOVASCULAR DISORDERS
  • 2018-06-27. Sex differences in body composition and association with cardiometabolic risk in BIOLOGY OF SEX DIFFERENCES
  • 2018-03-20. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population in EUROPEAN JOURNAL OF CLINICAL NUTRITION
  • 2017-11-20. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk in INTERNATIONAL JOURNAL OF OBESITY
  • 2016-03-23. Sex differences in the rate of abdominal adipose accrual during adulthood: the Fels Longitudinal Study in INTERNATIONAL JOURNAL OF OBESITY
  • 2013-02-22. Gender differences in the association of visceral and subcutaneous adiposity with adiponectin in African Americans: the Jackson Heart Study in BMC CARDIOVASCULAR DISORDERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13293-020-00317-4

    DOI

    http://dx.doi.org/10.1186/s13293-020-00317-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1129449710

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32680562


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Abdominal Fat", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Asians", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypertension", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414360.4", 
              "name": [
                "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Youzhou", 
            "id": "sg:person.016026411457.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026411457.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737\u2009N. Michigan Ave, 16th Floor, Chicago, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737\u2009N. Michigan Ave, 16th Floor, Chicago, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhuoli", 
            "id": "sg:person.013232656557.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414360.4", 
              "name": [
                "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jihong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414360.4", 
              "name": [
                "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Huayi", 
            "id": "sg:person.014665720037.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665720037.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414360.4", 
              "name": [
                "Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Xingshan", 
            "id": "sg:person.016340011327.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340011327.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.414360.4", 
              "name": [
                "Department of Radiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Xiaoguang", 
            "id": "sg:person.0751515362.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751515362.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3300 Gallows Road, Falls, 22042, Church, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.417781.c", 
              "name": [
                "Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3300 Gallows Road, Falls, 22042, Church, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Qiong", 
            "id": "sg:person.010742235055.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742235055.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00380-007-1018-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047990931", 
              "https://doi.org/10.1007/s00380-007-1018-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2261-13-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023803449", 
              "https://doi.org/10.1186/1471-2261-13-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2009.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045844601", 
              "https://doi.org/10.1038/ijo.2009.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41430-018-0122-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101631151", 
              "https://doi.org/10.1038/s41430-018-0122-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2017.289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092774755", 
              "https://doi.org/10.1038/ijo.2017.289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep38214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927048", 
              "https://doi.org/10.1038/srep38214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ijo.0802545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041953663", 
              "https://doi.org/10.1038/sj.ijo.0802545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ijo.0803163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042800697", 
              "https://doi.org/10.1038/sj.ijo.0803163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001230249", 
              "https://doi.org/10.1038/ijo.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12872-016-0424-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041473543", 
              "https://doi.org/10.1186/s12872-016-0424-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13293-018-0189-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105178205", 
              "https://doi.org/10.1186/s13293-018-0189-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-07-17", 
        "datePublishedReg": "2020-07-17", 
        "description": "BackgroundThere are inconsistent interpretations of the interrelationship of adiposity, anthropometric indices, and blood pressure (BP) in hypertensive patients. Additionally, whether these relationships differ between sexes is unknown. We aimed to elucidate the associations of adiposity indices measured using quantitative computed tomography (QCT) with BP and hypertension and to determine the effect of sex on the interrelationship of these parameters in a Chinese population.MethodsAbdominal adipose fat, including the visceral adipose tissue (VAT) area and subcutaneous adipose tissue (SAT) area, was measured by QCT in 1488 patients (514 men, 974 women). Body mass index (BMI), waist circumference (WC), hip circumference (HC), and systolic (SBP) and diastolic BP (DBP) were measured. Pearson correlation coefficients, multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the relationship and potential of adiposity indices to BP and risk of hypertension within sex groups.ResultsMen had significantly greater VAT area but less SAT area than women in hypertensive group. VAT, SAT, and WC were more highly correlated with SBP in men than in women. After controlling for body weight, height, and age, VAT area and WC were positively associated with SBP (VAT: \u03b2 = 0.309, p < 0.001; WC: \u03b2 = 0.148, p = 0.001) and DBP (VAT: \u03b2 = 0.099, p = 0.034; WC: \u03b2 = 0.198, p = 0.001) in women. VAT area was positively associated with SBP (\u03b2 = 0.444, p < 0.001) and DBP (\u03b2 = 0.146, p = 0.021) in men. WC had a significant correlation with an increased risk of hypertension in women but a borderline association in men (p = 0.059) when adjusted for VAT area and SAT area.ConclusionsThe association of abdominal adiposity with hypertension differs qualitatively by sex. WC may be an important determinant of hypertension and may be used for risk stratification for hypertension among Chinese individuals.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13293-020-00317-4", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8362623", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044456", 
            "issn": [
              "2042-6410"
            ], 
            "name": "Biology of Sex Differences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "quantitative computed tomography", 
          "adipose tissue area", 
          "waist circumference", 
          "risk of hypertension", 
          "blood pressure", 
          "body mass index", 
          "VAT area", 
          "diastolic BP", 
          "adiposity index", 
          "hip circumference", 
          "SAT area", 
          "Chinese population", 
          "visceral adipose tissue area", 
          "subcutaneous adipose tissue area", 
          "diastolic blood pressure", 
          "tissue area", 
          "abdominal adipose tissue", 
          "hypertension differs", 
          "untreated hypertension", 
          "hypertensive patients", 
          "hypertensive group", 
          "abdominal adiposity", 
          "risk stratification", 
          "mass index", 
          "anthropometric indices", 
          "ConclusionsThe association", 
          "hypertension", 
          "borderline association", 
          "computed tomography", 
          "body weight", 
          "adipose tissue", 
          "multivariate analysis", 
          "effects of sex", 
          "anthropometric data", 
          "SBP", 
          "women", 
          "characteristic curve", 
          "Pearson correlation coefficient", 
          "sex groups", 
          "adiposity", 
          "patients", 
          "significant correlation", 
          "Chinese individuals", 
          "sex differences", 
          "sex", 
          "men", 
          "association", 
          "circumference", 
          "risk", 
          "important determinant", 
          "index", 
          "systolic", 
          "group", 
          "BackgroundThere", 
          "population", 
          "ResultsMen", 
          "tomography", 
          "correlation coefficient", 
          "age", 
          "fat", 
          "tissue", 
          "stratification", 
          "individuals", 
          "determinants", 
          "area", 
          "differences", 
          "weight", 
          "VAT", 
          "relationship", 
          "interrelationships", 
          "correlation", 
          "effect", 
          "pressure", 
          "differs", 
          "inconsistent interpretations", 
          "data", 
          "receiver", 
          "curves", 
          "potential", 
          "analysis", 
          "height", 
          "SAT", 
          "parameters", 
          "interpretation", 
          "coefficient"
        ], 
        "name": "Sex differences in the association of abdominal adipose tissue and anthropometric data with untreated hypertension in a Chinese population", 
        "pagination": "38", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1129449710"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13293-020-00317-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32680562"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13293-020-00317-4", 
          "https://app.dimensions.ai/details/publication/pub.1129449710"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_861.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13293-020-00317-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13293-020-00317-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13293-020-00317-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13293-020-00317-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13293-020-00317-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    280 TRIPLES      21 PREDICATES      131 URIs      112 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13293-020-00317-4 schema:about N266f6ad0e6734f0c87a1179d0a212b35
    2 N495bd2ad2fa04849a3e0184ef61b3d3e
    3 N6540a9bab3054d9eb9c881ffc77332ae
    4 N69aa353ba48b421890454c227d132fab
    5 N6fe2bac7b40a47e2bdaa2394c6308a0a
    6 Na8a513d7d33542b0a58be4d4eda18ca5
    7 Nd5e546e916a041cdad22bba46195ee36
    8 Ne55daaa497a549858e8955d47ad644ca
    9 Ne66d9226424140729901ab714709d5d0
    10 Nf6019ccca12d4744bd63804128ed9553
    11 anzsrc-for:11
    12 anzsrc-for:1102
    13 schema:author N37aab5b12a1e4f988dcf94175c2f71fc
    14 schema:citation sg:pub.10.1007/s00380-007-1018-5
    15 sg:pub.10.1038/ijo.2009.279
    16 sg:pub.10.1038/ijo.2016.48
    17 sg:pub.10.1038/ijo.2017.289
    18 sg:pub.10.1038/s41430-018-0122-1
    19 sg:pub.10.1038/sj.ijo.0802545
    20 sg:pub.10.1038/sj.ijo.0803163
    21 sg:pub.10.1038/srep38214
    22 sg:pub.10.1186/1471-2261-13-9
    23 sg:pub.10.1186/s12872-016-0424-y
    24 sg:pub.10.1186/s13293-018-0189-3
    25 schema:datePublished 2020-07-17
    26 schema:datePublishedReg 2020-07-17
    27 schema:description BackgroundThere are inconsistent interpretations of the interrelationship of adiposity, anthropometric indices, and blood pressure (BP) in hypertensive patients. Additionally, whether these relationships differ between sexes is unknown. We aimed to elucidate the associations of adiposity indices measured using quantitative computed tomography (QCT) with BP and hypertension and to determine the effect of sex on the interrelationship of these parameters in a Chinese population.MethodsAbdominal adipose fat, including the visceral adipose tissue (VAT) area and subcutaneous adipose tissue (SAT) area, was measured by QCT in 1488 patients (514 men, 974 women). Body mass index (BMI), waist circumference (WC), hip circumference (HC), and systolic (SBP) and diastolic BP (DBP) were measured. Pearson correlation coefficients, multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the relationship and potential of adiposity indices to BP and risk of hypertension within sex groups.ResultsMen had significantly greater VAT area but less SAT area than women in hypertensive group. VAT, SAT, and WC were more highly correlated with SBP in men than in women. After controlling for body weight, height, and age, VAT area and WC were positively associated with SBP (VAT: β = 0.309, p < 0.001; WC: β = 0.148, p = 0.001) and DBP (VAT: β = 0.099, p = 0.034; WC: β = 0.198, p = 0.001) in women. VAT area was positively associated with SBP (β = 0.444, p < 0.001) and DBP (β = 0.146, p = 0.021) in men. WC had a significant correlation with an increased risk of hypertension in women but a borderline association in men (p = 0.059) when adjusted for VAT area and SAT area.ConclusionsThe association of abdominal adiposity with hypertension differs qualitatively by sex. WC may be an important determinant of hypertension and may be used for risk stratification for hypertension among Chinese individuals.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N309bfd1a021b4c598274c64e79f18d91
    31 N425a147d33134824bd4aa4aef4634049
    32 sg:journal.1044456
    33 schema:keywords BackgroundThere
    34 Chinese individuals
    35 Chinese population
    36 ConclusionsThe association
    37 Pearson correlation coefficient
    38 ResultsMen
    39 SAT
    40 SAT area
    41 SBP
    42 VAT
    43 VAT area
    44 abdominal adipose tissue
    45 abdominal adiposity
    46 adipose tissue
    47 adipose tissue area
    48 adiposity
    49 adiposity index
    50 age
    51 analysis
    52 anthropometric data
    53 anthropometric indices
    54 area
    55 association
    56 blood pressure
    57 body mass index
    58 body weight
    59 borderline association
    60 characteristic curve
    61 circumference
    62 coefficient
    63 computed tomography
    64 correlation
    65 correlation coefficient
    66 curves
    67 data
    68 determinants
    69 diastolic BP
    70 diastolic blood pressure
    71 differences
    72 differs
    73 effect
    74 effects of sex
    75 fat
    76 group
    77 height
    78 hip circumference
    79 hypertension
    80 hypertension differs
    81 hypertensive group
    82 hypertensive patients
    83 important determinant
    84 inconsistent interpretations
    85 index
    86 individuals
    87 interpretation
    88 interrelationships
    89 mass index
    90 men
    91 multivariate analysis
    92 parameters
    93 patients
    94 population
    95 potential
    96 pressure
    97 quantitative computed tomography
    98 receiver
    99 relationship
    100 risk
    101 risk of hypertension
    102 risk stratification
    103 sex
    104 sex differences
    105 sex groups
    106 significant correlation
    107 stratification
    108 subcutaneous adipose tissue area
    109 systolic
    110 tissue
    111 tissue area
    112 tomography
    113 untreated hypertension
    114 visceral adipose tissue area
    115 waist circumference
    116 weight
    117 women
    118 schema:name Sex differences in the association of abdominal adipose tissue and anthropometric data with untreated hypertension in a Chinese population
    119 schema:pagination 38
    120 schema:productId N56c6b1a0cbfe4904b1a10df5b10dd83b
    121 N62a49c754f2a4b5f826738fff6c30d39
    122 Nc13293cb960847baa83fe3a020e43fda
    123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129449710
    124 https://doi.org/10.1186/s13293-020-00317-4
    125 schema:sdDatePublished 2022-11-24T21:05
    126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    127 schema:sdPublisher Nfb3234a95c7a43bdbcac9b85a41b33b1
    128 schema:url https://doi.org/10.1186/s13293-020-00317-4
    129 sgo:license sg:explorer/license/
    130 sgo:sdDataset articles
    131 rdf:type schema:ScholarlyArticle
    132 N266f6ad0e6734f0c87a1179d0a212b35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name China
    134 rdf:type schema:DefinedTerm
    135 N309bfd1a021b4c598274c64e79f18d91 schema:volumeNumber 11
    136 rdf:type schema:PublicationVolume
    137 N37aab5b12a1e4f988dcf94175c2f71fc rdf:first sg:person.016026411457.47
    138 rdf:rest N4a43b3a1fda947dd949253cb6280d86b
    139 N425a147d33134824bd4aa4aef4634049 schema:issueNumber 1
    140 rdf:type schema:PublicationIssue
    141 N495bd2ad2fa04849a3e0184ef61b3d3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Hypertension
    143 rdf:type schema:DefinedTerm
    144 N4a43b3a1fda947dd949253cb6280d86b rdf:first sg:person.013232656557.16
    145 rdf:rest N6a8b961a0c934ed69a3b96a2e21abaaf
    146 N56c6b1a0cbfe4904b1a10df5b10dd83b schema:name pubmed_id
    147 schema:value 32680562
    148 rdf:type schema:PropertyValue
    149 N62a49c754f2a4b5f826738fff6c30d39 schema:name doi
    150 schema:value 10.1186/s13293-020-00317-4
    151 rdf:type schema:PropertyValue
    152 N6540a9bab3054d9eb9c881ffc77332ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Male
    154 rdf:type schema:DefinedTerm
    155 N69aa353ba48b421890454c227d132fab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Female
    157 rdf:type schema:DefinedTerm
    158 N6a8b961a0c934ed69a3b96a2e21abaaf rdf:first Nf6d5292dd9974a06b3d34b9a050412c0
    159 rdf:rest N9ad4c6ef34b647a09f17ff2fa675dbd0
    160 N6fe2bac7b40a47e2bdaa2394c6308a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Middle Aged
    162 rdf:type schema:DefinedTerm
    163 N988a5c91b1614207af90001a84e5b2f3 rdf:first sg:person.010742235055.16
    164 rdf:rest rdf:nil
    165 N9ad4c6ef34b647a09f17ff2fa675dbd0 rdf:first sg:person.014665720037.98
    166 rdf:rest Nf939dbcddb5d4c60b286bf510ef950af
    167 Na8a513d7d33542b0a58be4d4eda18ca5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Humans
    169 rdf:type schema:DefinedTerm
    170 Nc13293cb960847baa83fe3a020e43fda schema:name dimensions_id
    171 schema:value pub.1129449710
    172 rdf:type schema:PropertyValue
    173 Nc4d4885c931745e5a855a478edc4e855 rdf:first sg:person.0751515362.00
    174 rdf:rest N988a5c91b1614207af90001a84e5b2f3
    175 Nd5e546e916a041cdad22bba46195ee36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Aged
    177 rdf:type schema:DefinedTerm
    178 Ne55daaa497a549858e8955d47ad644ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Asians
    180 rdf:type schema:DefinedTerm
    181 Ne66d9226424140729901ab714709d5d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Sex Factors
    183 rdf:type schema:DefinedTerm
    184 Nf6019ccca12d4744bd63804128ed9553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Abdominal Fat
    186 rdf:type schema:DefinedTerm
    187 Nf6d5292dd9974a06b3d34b9a050412c0 schema:affiliation grid-institutes:grid.414360.4
    188 schema:familyName Wang
    189 schema:givenName Jihong
    190 rdf:type schema:Person
    191 Nf939dbcddb5d4c60b286bf510ef950af rdf:first sg:person.016340011327.12
    192 rdf:rest Nc4d4885c931745e5a855a478edc4e855
    193 Nfb3234a95c7a43bdbcac9b85a41b33b1 schema:name Springer Nature - SN SciGraph project
    194 rdf:type schema:Organization
    195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Medical and Health Sciences
    197 rdf:type schema:DefinedTerm
    198 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Cardiorespiratory Medicine and Haematology
    200 rdf:type schema:DefinedTerm
    201 sg:grant.8362623 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-020-00317-4
    202 rdf:type schema:MonetaryGrant
    203 sg:journal.1044456 schema:issn 2042-6410
    204 schema:name Biology of Sex Differences
    205 schema:publisher Springer Nature
    206 rdf:type schema:Periodical
    207 sg:person.010742235055.16 schema:affiliation grid-institutes:grid.417781.c
    208 schema:familyName Zhao
    209 schema:givenName Qiong
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010742235055.16
    211 rdf:type schema:Person
    212 sg:person.013232656557.16 schema:affiliation grid-institutes:grid.16753.36
    213 schema:familyName Zhang
    214 schema:givenName Zhuoli
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16
    216 rdf:type schema:Person
    217 sg:person.014665720037.98 schema:affiliation grid-institutes:grid.414360.4
    218 schema:familyName Sun
    219 schema:givenName Huayi
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665720037.98
    221 rdf:type schema:Person
    222 sg:person.016026411457.47 schema:affiliation grid-institutes:grid.414360.4
    223 schema:familyName Chen
    224 schema:givenName Youzhou
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026411457.47
    226 rdf:type schema:Person
    227 sg:person.016340011327.12 schema:affiliation grid-institutes:grid.414360.4
    228 schema:familyName Zhao
    229 schema:givenName Xingshan
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340011327.12
    231 rdf:type schema:Person
    232 sg:person.0751515362.00 schema:affiliation grid-institutes:grid.414360.4
    233 schema:familyName Cheng
    234 schema:givenName Xiaoguang
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751515362.00
    236 rdf:type schema:Person
    237 sg:pub.10.1007/s00380-007-1018-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990931
    238 https://doi.org/10.1007/s00380-007-1018-5
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/ijo.2009.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045844601
    241 https://doi.org/10.1038/ijo.2009.279
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ijo.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001230249
    244 https://doi.org/10.1038/ijo.2016.48
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ijo.2017.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092774755
    247 https://doi.org/10.1038/ijo.2017.289
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/s41430-018-0122-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101631151
    250 https://doi.org/10.1038/s41430-018-0122-1
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/sj.ijo.0802545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041953663
    253 https://doi.org/10.1038/sj.ijo.0802545
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/sj.ijo.0803163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042800697
    256 https://doi.org/10.1038/sj.ijo.0803163
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/srep38214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927048
    259 https://doi.org/10.1038/srep38214
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1471-2261-13-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023803449
    262 https://doi.org/10.1186/1471-2261-13-9
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/s12872-016-0424-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041473543
    265 https://doi.org/10.1186/s12872-016-0424-y
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/s13293-018-0189-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105178205
    268 https://doi.org/10.1186/s13293-018-0189-3
    269 rdf:type schema:CreativeWork
    270 grid-institutes:grid.16753.36 schema:alternateName Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, 16th Floor, Chicago, USA
    271 schema:name Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, 16th Floor, Chicago, USA
    272 rdf:type schema:Organization
    273 grid-institutes:grid.414360.4 schema:alternateName Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China
    274 Department of Radiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China
    275 schema:name Department of Cardiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China
    276 Department of Radiology, Beijing Jishuitan Hospital, No. 31 East Street, Xinjiekou, XiCheng District, 100035, Beijing, China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.417781.c schema:alternateName Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3300 Gallows Road, Falls, 22042, Church, VA, USA
    279 schema:name Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3300 Gallows Road, Falls, 22042, Church, VA, USA
    280 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...