Sex differences in body composition and association with cardiometabolic risk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-27

AUTHORS

Melanie Schorr, Laura E. Dichtel, Anu V. Gerweck, Ruben D. Valera, Martin Torriani, Karen K. Miller, Miriam A. Bredella

ABSTRACT

BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37 ± 10 years, BMI 35 ± 6 kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p ≥ 0.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p ≤ 0.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p < 0.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p < 0.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p ≤ 0.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3

DOI

http://dx.doi.org/10.1186/s13293-018-0189-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105178205

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29950175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Overweight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schorr", 
        "givenName": "Melanie", 
        "id": "sg:person.01360205707.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360205707.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dichtel", 
        "givenName": "Laura E.", 
        "id": "sg:person.0702715007.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702715007.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerweck", 
        "givenName": "Anu V.", 
        "id": "sg:person.01056076453.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056076453.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valera", 
        "givenName": "Ruben D.", 
        "id": "sg:person.015476541310.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476541310.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torriani", 
        "givenName": "Martin", 
        "id": "sg:person.0605434565.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605434565.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Karen K.", 
        "id": "sg:person.01102327633.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102327633.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bredella", 
        "givenName": "Miriam A.", 
        "id": "sg:person.01204737010.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204737010.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10334-005-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052071806", 
          "https://doi.org/10.1007/s10334-005-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-004-1637-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027464718", 
          "https://doi.org/10.1007/s00125-004-1637-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2042-6410-3-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032996744", 
          "https://doi.org/10.1186/2042-6410-3-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00404332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052712958", 
          "https://doi.org/10.1007/bf00404332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-014-0144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535562", 
          "https://doi.org/10.1186/s12933-014-0144-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2008.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102605", 
          "https://doi.org/10.1038/ijo.2008.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2009.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040611145", 
          "https://doi.org/10.1038/ijo.2009.286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-27", 
    "datePublishedReg": "2018-06-27", 
    "description": "BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37\u2009\u00b1\u200910\u00a0years, BMI 35\u2009\u00b1\u20096\u00a0kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p\u2009\u2265\u20090.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p\u2009\u2264\u20090.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p\u2009<\u20090.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p\u2009<\u20090.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p\u2009\u2264\u20090.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13293-018-0189-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6664499", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6618271", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705153", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7030859", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2540049", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438997", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2424022", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2421221", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2500680", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2420717", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044456", 
        "issn": [
          "2042-6410"
        ], 
        "name": "Biology of Sex Differences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "cardiometabolic risk markers", 
      "visceral adipose tissue", 
      "dual-energy X-ray absorptiometry", 
      "cardiometabolic risk profile", 
      "overweight/obesity", 
      "intramyocellular lipids", 
      "lower extremity fat", 
      "risk markers", 
      "extremity fat", 
      "body composition", 
      "fat distribution", 
      "fat mass", 
      "muscle mass", 
      "oral glucose tolerance test", 
      "risk profile", 
      "favorable cardiometabolic profile", 
      "sex differences", 
      "glucose tolerance test", 
      "similar mean age", 
      "X-ray absorptiometry", 
      "similar age", 
      "proton MR spectroscopy", 
      "functional imaging techniques", 
      "inflammatory markers", 
      "cardiometabolic profile", 
      "metabolic risk", 
      "cardiometabolic risk", 
      "serum insulin", 
      "mean age", 
      "tolerance test", 
      "more muscle mass", 
      "lean mass", 
      "BMI", 
      "adipose tissue", 
      "higher age", 
      "multivariate analysis", 
      "health consequences", 
      "male pattern", 
      "obesity", 
      "informed consent", 
      "MR spectroscopy", 
      "functional imaging", 
      "women", 
      "rank test", 
      "men", 
      "age", 
      "markers", 
      "fat", 
      "subjects", 
      "imaging techniques", 
      "risk", 
      "ResultsWomen", 
      "lipids", 
      "absorptiometry", 
      "MethodsAfter", 
      "insulin", 
      "differences", 
      "ConclusionsAlthough", 
      "tomography", 
      "sex", 
      "Wilcoxon", 
      "consent", 
      "tissue", 
      "association", 
      "profile", 
      "mass", 
      "test", 
      "imaging", 
      "linear correlation", 
      "study", 
      "complete understanding", 
      "correlation", 
      "purpose", 
      "patterns", 
      "consequences", 
      "relationship", 
      "analysis", 
      "understanding", 
      "distribution", 
      "technique", 
      "composition", 
      "IHL", 
      "spectroscopy"
    ], 
    "name": "Sex differences in body composition and association with cardiometabolic risk", 
    "pagination": "28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105178205"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13293-018-0189-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29950175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13293-018-0189-3", 
      "https://app.dimensions.ai/details/publication/pub.1105178205"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13293-018-0189-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      131 URIs      116 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13293-018-0189-3 schema:about N0fb1526d7aba4930939b99384c05bfe7
2 N1bf65a9767f54056adb84f6be725649d
3 N2b3f9d6fc9494e2f96ad60ba70d3bca2
4 N2d525a9d5de94348b0dcae27d7135bfa
5 N510d3db27a2a46d7ac015d6ddddf18ff
6 N55fba4d7c017460cb6fcd21d21e23a1b
7 N5faa3e44c2934b9f8ee7ec8659e02263
8 N6d49bc8dc3be45f1af5671439f631acd
9 Na5d6ceaa8f2542fc97e907ce2b844bce
10 Nb7a7da897b21449cbcc9a72898d267a4
11 Nb9d153cfb69a425b893e04c22e503fde
12 Nc5b2480b3a004617af8dd51ad3491ba9
13 Ne89ed3fdd97b45ea885f2325621e39d8
14 Neec3a7e51df14680aba1421d3e8f4632
15 Nf66c00a8353b486184b2cf96f2693580
16 Nfb5ec01e9d3c4781ba82363be9e744ed
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N9116f4705e8c43deb5f4a769b1484584
20 schema:citation sg:pub.10.1007/bf00404332
21 sg:pub.10.1007/s00125-004-1637-7
22 sg:pub.10.1007/s10334-005-0104-x
23 sg:pub.10.1038/ijo.2008.25
24 sg:pub.10.1038/ijo.2009.286
25 sg:pub.10.1186/2042-6410-3-13
26 sg:pub.10.1186/s12933-014-0144-5
27 schema:datePublished 2018-06-27
28 schema:datePublishedReg 2018-06-27
29 schema:description BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37 ± 10 years, BMI 35 ± 6 kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p ≥ 0.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p ≤ 0.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p < 0.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p < 0.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p ≤ 0.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N23158a5042834c5ca4c04785797855f7
33 N2783fb38ea444976a10ba49f591da2ff
34 sg:journal.1044456
35 schema:keywords BMI
36 ConclusionsAlthough
37 IHL
38 MR spectroscopy
39 MethodsAfter
40 ResultsWomen
41 Wilcoxon
42 X-ray absorptiometry
43 absorptiometry
44 adipose tissue
45 age
46 analysis
47 association
48 body composition
49 cardiometabolic profile
50 cardiometabolic risk
51 cardiometabolic risk markers
52 cardiometabolic risk profile
53 complete understanding
54 composition
55 consent
56 consequences
57 correlation
58 differences
59 distribution
60 dual-energy X-ray absorptiometry
61 extremity fat
62 fat
63 fat distribution
64 fat mass
65 favorable cardiometabolic profile
66 functional imaging
67 functional imaging techniques
68 glucose tolerance test
69 health consequences
70 higher age
71 imaging
72 imaging techniques
73 inflammatory markers
74 informed consent
75 insulin
76 intramyocellular lipids
77 lean mass
78 linear correlation
79 lipids
80 lower extremity fat
81 male pattern
82 markers
83 mass
84 mean age
85 men
86 metabolic risk
87 more muscle mass
88 multivariate analysis
89 muscle mass
90 obesity
91 oral glucose tolerance test
92 overweight/obesity
93 patterns
94 profile
95 proton MR spectroscopy
96 purpose
97 rank test
98 relationship
99 risk
100 risk markers
101 risk profile
102 serum insulin
103 sex
104 sex differences
105 similar age
106 similar mean age
107 spectroscopy
108 study
109 subjects
110 technique
111 test
112 tissue
113 tolerance test
114 tomography
115 understanding
116 visceral adipose tissue
117 women
118 schema:name Sex differences in body composition and association with cardiometabolic risk
119 schema:pagination 28
120 schema:productId N81b17942433449f3b4de0af52cf81dd2
121 Nc2b66230284745d1ba3e7036ea6d5493
122 Nd59e8763ff514794aed9f2234beeae2c
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105178205
124 https://doi.org/10.1186/s13293-018-0189-3
125 schema:sdDatePublished 2022-12-01T06:37
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Nc522a81b62994f6d8b40da9fa095b3f5
128 schema:url https://doi.org/10.1186/s13293-018-0189-3
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N0fb1526d7aba4930939b99384c05bfe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Muscle, Skeletal
134 rdf:type schema:DefinedTerm
135 N10ed3846ca704f72870a5ed5ad10bb22 rdf:first sg:person.0702715007.05
136 rdf:rest Nf7baa715e6c148c3a21618e66684c996
137 N19b996904ac845f5ba018d49a68df28d rdf:first sg:person.015476541310.51
138 rdf:rest N58938e6050684845b894dceb063df86d
139 N1bf65a9767f54056adb84f6be725649d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Female
141 rdf:type schema:DefinedTerm
142 N23158a5042834c5ca4c04785797855f7 schema:volumeNumber 9
143 rdf:type schema:PublicationVolume
144 N2783fb38ea444976a10ba49f591da2ff schema:issueNumber 1
145 rdf:type schema:PublicationIssue
146 N2b3f9d6fc9494e2f96ad60ba70d3bca2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Tomography, X-Ray Computed
148 rdf:type schema:DefinedTerm
149 N2d525a9d5de94348b0dcae27d7135bfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Cardiovascular Diseases
151 rdf:type schema:DefinedTerm
152 N38cb11dbb8924dd99c72107b07f11df5 rdf:first sg:person.01102327633.13
153 rdf:rest N8cb803a9fad843faa4d3179a5e621c3f
154 N510d3db27a2a46d7ac015d6ddddf18ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult
156 rdf:type schema:DefinedTerm
157 N55fba4d7c017460cb6fcd21d21e23a1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Lipid Metabolism
159 rdf:type schema:DefinedTerm
160 N58938e6050684845b894dceb063df86d rdf:first sg:person.0605434565.90
161 rdf:rest N38cb11dbb8924dd99c72107b07f11df5
162 N5faa3e44c2934b9f8ee7ec8659e02263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Male
164 rdf:type schema:DefinedTerm
165 N6d49bc8dc3be45f1af5671439f631acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Absorptiometry, Photon
167 rdf:type schema:DefinedTerm
168 N81b17942433449f3b4de0af52cf81dd2 schema:name doi
169 schema:value 10.1186/s13293-018-0189-3
170 rdf:type schema:PropertyValue
171 N8cb803a9fad843faa4d3179a5e621c3f rdf:first sg:person.01204737010.47
172 rdf:rest rdf:nil
173 N9116f4705e8c43deb5f4a769b1484584 rdf:first sg:person.01360205707.86
174 rdf:rest N10ed3846ca704f72870a5ed5ad10bb22
175 Na5d6ceaa8f2542fc97e907ce2b844bce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Liver
177 rdf:type schema:DefinedTerm
178 Nb7a7da897b21449cbcc9a72898d267a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Proton Magnetic Resonance Spectroscopy
180 rdf:type schema:DefinedTerm
181 Nb9d153cfb69a425b893e04c22e503fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Risk Factors
183 rdf:type schema:DefinedTerm
184 Nc2b66230284745d1ba3e7036ea6d5493 schema:name pubmed_id
185 schema:value 29950175
186 rdf:type schema:PropertyValue
187 Nc522a81b62994f6d8b40da9fa095b3f5 schema:name Springer Nature - SN SciGraph project
188 rdf:type schema:Organization
189 Nc5b2480b3a004617af8dd51ad3491ba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Body Composition
191 rdf:type schema:DefinedTerm
192 Nd59e8763ff514794aed9f2234beeae2c schema:name dimensions_id
193 schema:value pub.1105178205
194 rdf:type schema:PropertyValue
195 Ne89ed3fdd97b45ea885f2325621e39d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Adipose Tissue
197 rdf:type schema:DefinedTerm
198 Neec3a7e51df14680aba1421d3e8f4632 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Overweight
200 rdf:type schema:DefinedTerm
201 Nf66c00a8353b486184b2cf96f2693580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Sex Characteristics
203 rdf:type schema:DefinedTerm
204 Nf7baa715e6c148c3a21618e66684c996 rdf:first sg:person.01056076453.45
205 rdf:rest N19b996904ac845f5ba018d49a68df28d
206 Nfb5ec01e9d3c4781ba82363be9e744ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Humans
208 rdf:type schema:DefinedTerm
209 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
210 schema:name Medical and Health Sciences
211 rdf:type schema:DefinedTerm
212 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
213 schema:name Clinical Sciences
214 rdf:type schema:DefinedTerm
215 sg:grant.2420717 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
216 rdf:type schema:MonetaryGrant
217 sg:grant.2421221 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
218 rdf:type schema:MonetaryGrant
219 sg:grant.2424022 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
220 rdf:type schema:MonetaryGrant
221 sg:grant.2438997 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
222 rdf:type schema:MonetaryGrant
223 sg:grant.2500680 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
224 rdf:type schema:MonetaryGrant
225 sg:grant.2540049 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
226 rdf:type schema:MonetaryGrant
227 sg:grant.2705153 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
228 rdf:type schema:MonetaryGrant
229 sg:grant.6618271 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
230 rdf:type schema:MonetaryGrant
231 sg:grant.6664499 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
232 rdf:type schema:MonetaryGrant
233 sg:grant.7030859 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
234 rdf:type schema:MonetaryGrant
235 sg:journal.1044456 schema:issn 2042-6410
236 schema:name Biology of Sex Differences
237 schema:publisher Springer Nature
238 rdf:type schema:Periodical
239 sg:person.01056076453.45 schema:affiliation grid-institutes:grid.38142.3c
240 schema:familyName Gerweck
241 schema:givenName Anu V.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056076453.45
243 rdf:type schema:Person
244 sg:person.01102327633.13 schema:affiliation grid-institutes:grid.38142.3c
245 schema:familyName Miller
246 schema:givenName Karen K.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102327633.13
248 rdf:type schema:Person
249 sg:person.01204737010.47 schema:affiliation grid-institutes:grid.38142.3c
250 schema:familyName Bredella
251 schema:givenName Miriam A.
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204737010.47
253 rdf:type schema:Person
254 sg:person.01360205707.86 schema:affiliation grid-institutes:grid.38142.3c
255 schema:familyName Schorr
256 schema:givenName Melanie
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360205707.86
258 rdf:type schema:Person
259 sg:person.015476541310.51 schema:affiliation grid-institutes:grid.38142.3c
260 schema:familyName Valera
261 schema:givenName Ruben D.
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476541310.51
263 rdf:type schema:Person
264 sg:person.0605434565.90 schema:affiliation grid-institutes:grid.38142.3c
265 schema:familyName Torriani
266 schema:givenName Martin
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605434565.90
268 rdf:type schema:Person
269 sg:person.0702715007.05 schema:affiliation grid-institutes:grid.38142.3c
270 schema:familyName Dichtel
271 schema:givenName Laura E.
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702715007.05
273 rdf:type schema:Person
274 sg:pub.10.1007/bf00404332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052712958
275 https://doi.org/10.1007/bf00404332
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/s00125-004-1637-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027464718
278 https://doi.org/10.1007/s00125-004-1637-7
279 rdf:type schema:CreativeWork
280 sg:pub.10.1007/s10334-005-0104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052071806
281 https://doi.org/10.1007/s10334-005-0104-x
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/ijo.2008.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102605
284 https://doi.org/10.1038/ijo.2008.25
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/ijo.2009.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040611145
287 https://doi.org/10.1038/ijo.2009.286
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/2042-6410-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032996744
290 https://doi.org/10.1186/2042-6410-3-13
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/s12933-014-0144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535562
293 https://doi.org/10.1186/s12933-014-0144-5
294 rdf:type schema:CreativeWork
295 grid-institutes:grid.38142.3c schema:alternateName Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA
296 Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA
297 schema:name Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA
298 Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...