Sex differences in body composition and association with cardiometabolic risk View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-27

AUTHORS

Melanie Schorr, Laura E. Dichtel, Anu V. Gerweck, Ruben D. Valera, Martin Torriani, Karen K. Miller, Miriam A. Bredella

ABSTRACT

BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37 ± 10 years, BMI 35 ± 6 kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p ≥ 0.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p ≤ 0.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p < 0.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p < 0.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p ≤ 0.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3

DOI

http://dx.doi.org/10.1186/s13293-018-0189-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105178205

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29950175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Composition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipid Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Overweight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schorr", 
        "givenName": "Melanie", 
        "id": "sg:person.01360205707.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360205707.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dichtel", 
        "givenName": "Laura E.", 
        "id": "sg:person.0702715007.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702715007.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerweck", 
        "givenName": "Anu V.", 
        "id": "sg:person.01056076453.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056076453.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valera", 
        "givenName": "Ruben D.", 
        "id": "sg:person.015476541310.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476541310.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torriani", 
        "givenName": "Martin", 
        "id": "sg:person.0605434565.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605434565.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Karen K.", 
        "id": "sg:person.01102327633.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102327633.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bredella", 
        "givenName": "Miriam A.", 
        "id": "sg:person.01204737010.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204737010.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10334-005-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052071806", 
          "https://doi.org/10.1007/s10334-005-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-004-1637-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027464718", 
          "https://doi.org/10.1007/s00125-004-1637-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2042-6410-3-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032996744", 
          "https://doi.org/10.1186/2042-6410-3-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00404332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052712958", 
          "https://doi.org/10.1007/bf00404332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-014-0144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535562", 
          "https://doi.org/10.1186/s12933-014-0144-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2008.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102605", 
          "https://doi.org/10.1038/ijo.2008.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2009.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040611145", 
          "https://doi.org/10.1038/ijo.2009.286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-27", 
    "datePublishedReg": "2018-06-27", 
    "description": "BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37\u2009\u00b1\u200910\u00a0years, BMI 35\u2009\u00b1\u20096\u00a0kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p\u2009\u2265\u20090.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p\u2009\u2264\u20090.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p\u2009<\u20090.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p\u2009<\u20090.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p\u2009\u2264\u20090.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13293-018-0189-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6664499", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6618271", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705153", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7030859", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2540049", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438997", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2424022", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2421221", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2500680", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2420717", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044456", 
        "issn": [
          "2042-6410"
        ], 
        "name": "Biology of Sex Differences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "cardiometabolic risk markers", 
      "visceral adipose tissue", 
      "dual-energy X-ray absorptiometry", 
      "cardiometabolic risk profile", 
      "overweight/obesity", 
      "intramyocellular lipids", 
      "lower extremity fat", 
      "risk markers", 
      "extremity fat", 
      "body composition", 
      "fat distribution", 
      "fat mass", 
      "muscle mass", 
      "oral glucose tolerance test", 
      "risk profile", 
      "favorable cardiometabolic profile", 
      "sex differences", 
      "glucose tolerance test", 
      "similar mean age", 
      "X-ray absorptiometry", 
      "similar age", 
      "proton MR spectroscopy", 
      "functional imaging techniques", 
      "inflammatory markers", 
      "cardiometabolic profile", 
      "metabolic risk", 
      "cardiometabolic risk", 
      "serum insulin", 
      "mean age", 
      "tolerance test", 
      "more muscle mass", 
      "lean mass", 
      "BMI", 
      "adipose tissue", 
      "higher age", 
      "multivariate analysis", 
      "health consequences", 
      "male pattern", 
      "obesity", 
      "informed consent", 
      "MR spectroscopy", 
      "functional imaging", 
      "women", 
      "rank test", 
      "men", 
      "age", 
      "markers", 
      "fat", 
      "subjects", 
      "imaging techniques", 
      "risk", 
      "ResultsWomen", 
      "lipids", 
      "absorptiometry", 
      "MethodsAfter", 
      "insulin", 
      "differences", 
      "ConclusionsAlthough", 
      "tomography", 
      "sex", 
      "Wilcoxon", 
      "consent", 
      "tissue", 
      "association", 
      "profile", 
      "mass", 
      "test", 
      "imaging", 
      "linear correlation", 
      "study", 
      "complete understanding", 
      "correlation", 
      "purpose", 
      "patterns", 
      "consequences", 
      "relationship", 
      "analysis", 
      "understanding", 
      "distribution", 
      "technique", 
      "composition", 
      "IHL", 
      "spectroscopy"
    ], 
    "name": "Sex differences in body composition and association with cardiometabolic risk", 
    "pagination": "28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105178205"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13293-018-0189-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29950175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13293-018-0189-3", 
      "https://app.dimensions.ai/details/publication/pub.1105178205"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13293-018-0189-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13293-018-0189-3'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      131 URIs      116 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13293-018-0189-3 schema:about N02b7ec0fa0e8437bb73160700c39c8cd
2 N1ba2357bded14fbeaa8b61165f426062
3 N22e73985c1ef45bbbcaae05c39267404
4 N3965bb9a31d640d882d07f95b9a982ad
5 N52b6021176fa4793b8fe32b9f114eaf2
6 N6198c1526d394f2784dd28d9beff8513
7 N65af9b6d990e4736a76354cf816154c9
8 N720b2b896d62430e87c781e52172c43e
9 N7a6ab8706a694d2db6fadc732729ec88
10 N92a487b59c9e4fc3a044f87cc79f4ffc
11 Nb1de2bc761514165906a4bbafd564fce
12 Nc37541c78a014e6daeceba6b5beebb6b
13 Nd69c486e919943df881f67b4c501762e
14 Nebdadec237324cbebf064debc844c36d
15 Nf3a18f2b32d94dff96e4e3b2848f5456
16 Nfc557dd61c0747619a0427c5618a97af
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N4cea7152af954194b3b40b48dc6a5947
20 schema:citation sg:pub.10.1007/bf00404332
21 sg:pub.10.1007/s00125-004-1637-7
22 sg:pub.10.1007/s10334-005-0104-x
23 sg:pub.10.1038/ijo.2008.25
24 sg:pub.10.1038/ijo.2009.286
25 sg:pub.10.1186/2042-6410-3-13
26 sg:pub.10.1186/s12933-014-0144-5
27 schema:datePublished 2018-06-27
28 schema:datePublishedReg 2018-06-27
29 schema:description BackgroundBody composition differs between men and women, with women having proportionally more fat mass and men more muscle mass. Although men and women are both susceptible to obesity, health consequences differ between the sexes. The purpose of our study was to assess sex differences in body composition using anatomic and functional imaging techniques, and its relationship to cardiometabolic risk markers in subjects with overweight/obesity.MethodsAfter written informed consent, we prospectively recruited 208 subjects with overweight/obesity who were otherwise healthy (94 men, 114 women, age 37 ± 10 years, BMI 35 ± 6 kg/m2). Subjects underwent dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) for fat and muscle mass, proton MR spectroscopy (1H-MRS) for intrahepatic (IHL) and intramyocellular lipids (IMCL), an oral glucose tolerance test, serum insulin, lipids, and inflammatory markers. Men and women were compared by Wilcoxon signed rank test. Linear correlation and multivariate analyses between body composition and cardiometabolic risk markers were performed.ResultsWomen and men were of similar mean age and BMI (p ≥ 0.2). Women had higher %fat mass, extremity fat, and lower lean mass compared to men (p ≤ 0.0005). However, men had higher visceral adipose tissue (VAT) and IMCL and higher age-and BMI-adjusted IHL (p < 0.05). At similar age and BMI, men had a more detrimental cardiometabolic risk profile compared to women (p < 0.01). However, VAT in women, and IMCL in men, were more strongly associated with cardiometabolic risk markers, while more lower extremity fat was associated with a more favorable cardiometabolic profile in women compared to men (p ≤ 0.03).ConclusionsAlthough the male pattern of fat distribution is associated with a more detrimental cardiometabolic risk profile compared to women of similar age and BMI, VAT is more strongly associated with cardiometabolic risk markers in women, while IMCL are more detrimental in men. Lower extremity fat is relatively protective, in women more than in men. This suggests that detailed anatomic and functional imaging, rather than BMI, provides a more complete understanding of metabolic risk associated with sex differences in fat distribution.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N8fbb9b9da53e4257a5ca2aba799fa6c8
33 Na7324e09b84f49e5b902242bf92551ea
34 sg:journal.1044456
35 schema:keywords BMI
36 ConclusionsAlthough
37 IHL
38 MR spectroscopy
39 MethodsAfter
40 ResultsWomen
41 Wilcoxon
42 X-ray absorptiometry
43 absorptiometry
44 adipose tissue
45 age
46 analysis
47 association
48 body composition
49 cardiometabolic profile
50 cardiometabolic risk
51 cardiometabolic risk markers
52 cardiometabolic risk profile
53 complete understanding
54 composition
55 consent
56 consequences
57 correlation
58 differences
59 distribution
60 dual-energy X-ray absorptiometry
61 extremity fat
62 fat
63 fat distribution
64 fat mass
65 favorable cardiometabolic profile
66 functional imaging
67 functional imaging techniques
68 glucose tolerance test
69 health consequences
70 higher age
71 imaging
72 imaging techniques
73 inflammatory markers
74 informed consent
75 insulin
76 intramyocellular lipids
77 lean mass
78 linear correlation
79 lipids
80 lower extremity fat
81 male pattern
82 markers
83 mass
84 mean age
85 men
86 metabolic risk
87 more muscle mass
88 multivariate analysis
89 muscle mass
90 obesity
91 oral glucose tolerance test
92 overweight/obesity
93 patterns
94 profile
95 proton MR spectroscopy
96 purpose
97 rank test
98 relationship
99 risk
100 risk markers
101 risk profile
102 serum insulin
103 sex
104 sex differences
105 similar age
106 similar mean age
107 spectroscopy
108 study
109 subjects
110 technique
111 test
112 tissue
113 tolerance test
114 tomography
115 understanding
116 visceral adipose tissue
117 women
118 schema:name Sex differences in body composition and association with cardiometabolic risk
119 schema:pagination 28
120 schema:productId N8edc50a59af644a9b996da926aa60ddd
121 N9ccd04a83875486aa45b4a48faa9607f
122 Nfd2918ed38c84594b8222dd830ac0380
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105178205
124 https://doi.org/10.1186/s13293-018-0189-3
125 schema:sdDatePublished 2022-12-01T06:37
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Na6384f12af024a76bb357a5dc2d07523
128 schema:url https://doi.org/10.1186/s13293-018-0189-3
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N02b7ec0fa0e8437bb73160700c39c8cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cardiovascular Diseases
134 rdf:type schema:DefinedTerm
135 N05d539deaa7844c09a843dcf07fcb8c9 rdf:first sg:person.0605434565.90
136 rdf:rest N83bc3064987540acb5813730c471007e
137 N1ba2357bded14fbeaa8b61165f426062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adipose Tissue
139 rdf:type schema:DefinedTerm
140 N22e73985c1ef45bbbcaae05c39267404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Overweight
142 rdf:type schema:DefinedTerm
143 N26ed3e589f904de7b99342b472a4173c rdf:first sg:person.01056076453.45
144 rdf:rest Na118550502224852ad82c4a300868301
145 N3965bb9a31d640d882d07f95b9a982ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Sex Characteristics
147 rdf:type schema:DefinedTerm
148 N4cea7152af954194b3b40b48dc6a5947 rdf:first sg:person.01360205707.86
149 rdf:rest N6d4544be09ad4a7a949bc8cf4488fab6
150 N52b6021176fa4793b8fe32b9f114eaf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N6198c1526d394f2784dd28d9beff8513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Liver
155 rdf:type schema:DefinedTerm
156 N65af9b6d990e4736a76354cf816154c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Risk Factors
158 rdf:type schema:DefinedTerm
159 N6d4544be09ad4a7a949bc8cf4488fab6 rdf:first sg:person.0702715007.05
160 rdf:rest N26ed3e589f904de7b99342b472a4173c
161 N6da0bbedccdb4ac0baa14cb7fadd193b rdf:first sg:person.01204737010.47
162 rdf:rest rdf:nil
163 N720b2b896d62430e87c781e52172c43e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Tomography, X-Ray Computed
165 rdf:type schema:DefinedTerm
166 N7a6ab8706a694d2db6fadc732729ec88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Lipid Metabolism
168 rdf:type schema:DefinedTerm
169 N83bc3064987540acb5813730c471007e rdf:first sg:person.01102327633.13
170 rdf:rest N6da0bbedccdb4ac0baa14cb7fadd193b
171 N8edc50a59af644a9b996da926aa60ddd schema:name doi
172 schema:value 10.1186/s13293-018-0189-3
173 rdf:type schema:PropertyValue
174 N8fbb9b9da53e4257a5ca2aba799fa6c8 schema:issueNumber 1
175 rdf:type schema:PublicationIssue
176 N92a487b59c9e4fc3a044f87cc79f4ffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Adult
178 rdf:type schema:DefinedTerm
179 N9ccd04a83875486aa45b4a48faa9607f schema:name dimensions_id
180 schema:value pub.1105178205
181 rdf:type schema:PropertyValue
182 Na118550502224852ad82c4a300868301 rdf:first sg:person.015476541310.51
183 rdf:rest N05d539deaa7844c09a843dcf07fcb8c9
184 Na6384f12af024a76bb357a5dc2d07523 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Na7324e09b84f49e5b902242bf92551ea schema:volumeNumber 9
187 rdf:type schema:PublicationVolume
188 Nb1de2bc761514165906a4bbafd564fce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Proton Magnetic Resonance Spectroscopy
190 rdf:type schema:DefinedTerm
191 Nc37541c78a014e6daeceba6b5beebb6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Body Composition
193 rdf:type schema:DefinedTerm
194 Nd69c486e919943df881f67b4c501762e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Absorptiometry, Photon
196 rdf:type schema:DefinedTerm
197 Nebdadec237324cbebf064debc844c36d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Male
199 rdf:type schema:DefinedTerm
200 Nf3a18f2b32d94dff96e4e3b2848f5456 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Humans
202 rdf:type schema:DefinedTerm
203 Nfc557dd61c0747619a0427c5618a97af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Muscle, Skeletal
205 rdf:type schema:DefinedTerm
206 Nfd2918ed38c84594b8222dd830ac0380 schema:name pubmed_id
207 schema:value 29950175
208 rdf:type schema:PropertyValue
209 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
210 schema:name Medical and Health Sciences
211 rdf:type schema:DefinedTerm
212 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
213 schema:name Clinical Sciences
214 rdf:type schema:DefinedTerm
215 sg:grant.2420717 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
216 rdf:type schema:MonetaryGrant
217 sg:grant.2421221 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
218 rdf:type schema:MonetaryGrant
219 sg:grant.2424022 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
220 rdf:type schema:MonetaryGrant
221 sg:grant.2438997 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
222 rdf:type schema:MonetaryGrant
223 sg:grant.2500680 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
224 rdf:type schema:MonetaryGrant
225 sg:grant.2540049 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
226 rdf:type schema:MonetaryGrant
227 sg:grant.2705153 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
228 rdf:type schema:MonetaryGrant
229 sg:grant.6618271 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
230 rdf:type schema:MonetaryGrant
231 sg:grant.6664499 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
232 rdf:type schema:MonetaryGrant
233 sg:grant.7030859 http://pending.schema.org/fundedItem sg:pub.10.1186/s13293-018-0189-3
234 rdf:type schema:MonetaryGrant
235 sg:journal.1044456 schema:issn 2042-6410
236 schema:name Biology of Sex Differences
237 schema:publisher Springer Nature
238 rdf:type schema:Periodical
239 sg:person.01056076453.45 schema:affiliation grid-institutes:grid.38142.3c
240 schema:familyName Gerweck
241 schema:givenName Anu V.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056076453.45
243 rdf:type schema:Person
244 sg:person.01102327633.13 schema:affiliation grid-institutes:grid.38142.3c
245 schema:familyName Miller
246 schema:givenName Karen K.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102327633.13
248 rdf:type schema:Person
249 sg:person.01204737010.47 schema:affiliation grid-institutes:grid.38142.3c
250 schema:familyName Bredella
251 schema:givenName Miriam A.
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204737010.47
253 rdf:type schema:Person
254 sg:person.01360205707.86 schema:affiliation grid-institutes:grid.38142.3c
255 schema:familyName Schorr
256 schema:givenName Melanie
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360205707.86
258 rdf:type schema:Person
259 sg:person.015476541310.51 schema:affiliation grid-institutes:grid.38142.3c
260 schema:familyName Valera
261 schema:givenName Ruben D.
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476541310.51
263 rdf:type schema:Person
264 sg:person.0605434565.90 schema:affiliation grid-institutes:grid.38142.3c
265 schema:familyName Torriani
266 schema:givenName Martin
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605434565.90
268 rdf:type schema:Person
269 sg:person.0702715007.05 schema:affiliation grid-institutes:grid.38142.3c
270 schema:familyName Dichtel
271 schema:givenName Laura E.
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702715007.05
273 rdf:type schema:Person
274 sg:pub.10.1007/bf00404332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052712958
275 https://doi.org/10.1007/bf00404332
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/s00125-004-1637-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027464718
278 https://doi.org/10.1007/s00125-004-1637-7
279 rdf:type schema:CreativeWork
280 sg:pub.10.1007/s10334-005-0104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052071806
281 https://doi.org/10.1007/s10334-005-0104-x
282 rdf:type schema:CreativeWork
283 sg:pub.10.1038/ijo.2008.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102605
284 https://doi.org/10.1038/ijo.2008.25
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/ijo.2009.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040611145
287 https://doi.org/10.1038/ijo.2009.286
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/2042-6410-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032996744
290 https://doi.org/10.1186/2042-6410-3-13
291 rdf:type schema:CreativeWork
292 sg:pub.10.1186/s12933-014-0144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535562
293 https://doi.org/10.1186/s12933-014-0144-5
294 rdf:type schema:CreativeWork
295 grid-institutes:grid.38142.3c schema:alternateName Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA
296 Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA
297 schema:name Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Yawkey 6E, 55 Fruit Street, 02114, Boston, MA, USA
298 Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Bulfinch 457B, 55 Fruit Street, 02114, Boston, MA, USA
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...