Fast Adipogenesis Tracking System (FATS)—a robust, high-throughput, automation-ready adipogenesis quantification technique View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Chengxiang Yuan, Smarajit Chakraborty, Krishna Kanth Chitta, Subha Subramanian, Tau En Lim, Weiping Han, K. N. Bhanu Prakash, Shigeki Sugii

ABSTRACT

Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows. More... »

PAGES

38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13287-019-1141-0

DOI

http://dx.doi.org/10.1186/s13287-019-1141-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111593646

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670100


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chengxiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Smarajit", 
        "id": "sg:person.014426201570.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426201570.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chitta", 
        "givenName": "Krishna Kanth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanian", 
        "givenName": "Subha", 
        "id": "sg:person.014344163650.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344163650.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Tau En", 
        "id": "sg:person.013046477757.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046477757.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Weiping", 
        "id": "sg:person.01061755457.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061755457.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhanu Prakash", 
        "givenName": "K. N.", 
        "id": "sg:person.01364671546.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364671546.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke NUS Graduate Medical School", 
          "id": "https://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore", 
            "Duke-NUS Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugii", 
        "givenName": "Shigeki", 
        "id": "sg:person.01141063354.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141063354.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/erm.2014.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001497037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci103193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005981003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006283621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5sc02168e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006348877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cbi20090299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010179952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cbi20090299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010179952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20121870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010570311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20121870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010570311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5334/jors.ac", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011362754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-62703-056-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013118222", 
          "https://doi.org/10.1007/978-1-62703-056-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aanat.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013467335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016080500", 
          "https://doi.org/10.1038/nprot.2010.199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocel.2013.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016721129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2011.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018571498", 
          "https://doi.org/10.1038/ijo.2011.119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057107306502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019014095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057107306502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019014095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcyt.2012.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019544242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.294.5548.1866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019836988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-9-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020305766", 
          "https://doi.org/10.1186/1479-5876-9-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021087942", 
          "https://doi.org/10.1038/nrm2066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021087942", 
          "https://doi.org/10.1038/nrm2066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcyt.2013.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025657272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db06-0263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025966547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1753-4887.2007.00004.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026267722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.a.22333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2011.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029020593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tec.2014.0513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032584467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034270447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m011320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035708225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2015.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038810795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stemcr.2014.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049200094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051658348", 
          "https://doi.org/10.1038/sj.ijo.0802777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051658348", 
          "https://doi.org/10.1038/sj.ijo.0802777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stem.1607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052771890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2007.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2007.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.d059758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064192752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2004-0539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064327426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db15-1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070729733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4252/wjsc.v6.i4.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072402296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080091322", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-811920-4.00016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107148508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13287-019-1141-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043222", 
        "issn": [
          "1757-6512"
        ], 
        "name": "Stem Cell Research & Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Fast Adipogenesis Tracking System (FATS)\u2014a robust, high-throughput, automation-ready adipogenesis quantification technique", 
    "pagination": "38", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51db36369b3179ba727a97ec7f81c0a5c70b931cc82470da289835712224d50d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670100"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101527581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13287-019-1141-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111593646"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13287-019-1141-0", 
      "https://app.dimensions.ai/details/publication/pub.1111593646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13287-019-1141-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13287-019-1141-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13287-019-1141-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13287-019-1141-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13287-019-1141-0'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13287-019-1141-0 schema:about anzsrc-for:10
2 anzsrc-for:1004
3 schema:author Nc6e32c6f9d644be4b06597c6bf3d8501
4 schema:citation sg:pub.10.1007/978-1-62703-056-4_11
5 sg:pub.10.1038/ijo.2011.119
6 sg:pub.10.1038/nprot.2010.199
7 sg:pub.10.1038/nrm2066
8 sg:pub.10.1038/sj.ijo.0802777
9 sg:pub.10.1186/1479-5876-9-47
10 https://app.dimensions.ai/details/publication/pub.1080091322
11 https://doi.org/10.1002/cyto.a.22333
12 https://doi.org/10.1002/stem.1607
13 https://doi.org/10.1016/b978-0-12-811920-4.00016-1
14 https://doi.org/10.1016/j.aanat.2008.09.003
15 https://doi.org/10.1016/j.biocel.2013.02.013
16 https://doi.org/10.1016/j.febslet.2010.06.010
17 https://doi.org/10.1016/j.febslet.2011.05.007
18 https://doi.org/10.1016/j.jcyt.2012.07.001
19 https://doi.org/10.1016/j.jcyt.2013.04.010
20 https://doi.org/10.1016/j.metabol.2015.12.015
21 https://doi.org/10.1016/j.stemcr.2014.01.002
22 https://doi.org/10.1017/erm.2014.8
23 https://doi.org/10.1039/c5sc02168e
24 https://doi.org/10.1042/bj20121870
25 https://doi.org/10.1042/cbi20090299
26 https://doi.org/10.1089/ten.tec.2014.0513
27 https://doi.org/10.1109/mcse.2007.53
28 https://doi.org/10.1109/mcse.2007.55
29 https://doi.org/10.1111/j.1753-4887.2007.00004.x
30 https://doi.org/10.1126/science.294.5548.1866
31 https://doi.org/10.1172/jci103193
32 https://doi.org/10.1177/1087057107306502
33 https://doi.org/10.1194/jlr.d059758
34 https://doi.org/10.1194/jlr.m011320
35 https://doi.org/10.1210/me.2004-0539
36 https://doi.org/10.1371/journal.pone.0079724
37 https://doi.org/10.2337/db06-0263
38 https://doi.org/10.2337/db15-1315
39 https://doi.org/10.4252/wjsc.v6.i4.467
40 https://doi.org/10.5334/jors.ac
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description Adipogenesis is essential in in vitro experimentation to assess differentiation capability of stem cells, and therefore, its accurate measurement is important. Quantitative analysis of adipogenic levels, however, is challenging and often susceptible to errors due to non-specific reading or manual estimation by observers. To this end, we developed a novel adipocyte quantification algorithm, named Fast Adipogenesis Tracking System (FATS), based on computer vision libraries. The FATS algorithm is versatile and capable of accurately detecting and quantifying percentage of cells undergoing adipogenic and browning differentiation even under difficult conditions such as the presence of large cell clumps or high cell densities. The algorithm was tested on various cell lines including 3T3-L1 cells, adipose-derived mesenchymal stem cells (ASCs), and induced pluripotent stem cell (iPSC)-derived cells. The FATS algorithm is particularly useful for adipogenic measurement of embryoid bodies derived from pluripotent stem cells and was capable of accurately distinguishing adipogenic cells from false-positive stains. We then demonstrate the effectiveness of the FATS algorithm for screening of nuclear receptor ligands that affect adipogenesis in the high-throughput manner. Together, the FATS offer a universal and automated image-based method to quantify adipocyte differentiation of different cell lines in both standard and high-throughput workflows.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N4a2d0c5df1b14d04b379139f002dd695
48 Nd1a371a9c2e943dd97a7203f6501e5ca
49 sg:journal.1043222
50 schema:name Fast Adipogenesis Tracking System (FATS)—a robust, high-throughput, automation-ready adipogenesis quantification technique
51 schema:pagination 38
52 schema:productId N079c467b3f354b7786639ce6a20959e7
53 N1a0a794166a247cc9919436b58d3e315
54 N396fc92e792243c2aecdc6efad7789a6
55 N9da3b7b75a6c4c4f802ad48144b65f92
56 Ne5c999291adb4a4291c38c291bbb1f61
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111593646
58 https://doi.org/10.1186/s13287-019-1141-0
59 schema:sdDatePublished 2019-04-11T08:55
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N2450f8dddd75462d8b46cb4134088162
62 schema:url https://link.springer.com/10.1186%2Fs13287-019-1141-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N079c467b3f354b7786639ce6a20959e7 schema:name nlm_unique_id
67 schema:value 101527581
68 rdf:type schema:PropertyValue
69 N1a0a794166a247cc9919436b58d3e315 schema:name readcube_id
70 schema:value 51db36369b3179ba727a97ec7f81c0a5c70b931cc82470da289835712224d50d
71 rdf:type schema:PropertyValue
72 N2450f8dddd75462d8b46cb4134088162 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N26593808ba894c5a851e8cfdfb476dc2 rdf:first sg:person.013046477757.88
75 rdf:rest Nbd726e325bfb4db5bd13e6655dbb09fa
76 N2ad5419b198545aea2442740ecf67619 rdf:first N8fcc7a0aaf1c4970aeb7421e3b4de0e8
77 rdf:rest N31f8c65a92504cc692588432954a0581
78 N31f8c65a92504cc692588432954a0581 rdf:first sg:person.014344163650.29
79 rdf:rest N26593808ba894c5a851e8cfdfb476dc2
80 N396fc92e792243c2aecdc6efad7789a6 schema:name doi
81 schema:value 10.1186/s13287-019-1141-0
82 rdf:type schema:PropertyValue
83 N4a2d0c5df1b14d04b379139f002dd695 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N7dbf1d60f30f4ee499bb9399dd07cd66 rdf:first sg:person.01364671546.47
86 rdf:rest Na561690642b54d7296a12283dfd20f45
87 N8bafafa48eb44cd68638904bacb8c146 rdf:first sg:person.014426201570.10
88 rdf:rest N2ad5419b198545aea2442740ecf67619
89 N8fcc7a0aaf1c4970aeb7421e3b4de0e8 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
90 schema:familyName Chitta
91 schema:givenName Krishna Kanth
92 rdf:type schema:Person
93 N9da3b7b75a6c4c4f802ad48144b65f92 schema:name dimensions_id
94 schema:value pub.1111593646
95 rdf:type schema:PropertyValue
96 Na561690642b54d7296a12283dfd20f45 rdf:first sg:person.01141063354.46
97 rdf:rest rdf:nil
98 Nbd726e325bfb4db5bd13e6655dbb09fa rdf:first sg:person.01061755457.18
99 rdf:rest N7dbf1d60f30f4ee499bb9399dd07cd66
100 Nbf270cae3b9e4274b848e156ed011fd8 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
101 schema:familyName Yuan
102 schema:givenName Chengxiang
103 rdf:type schema:Person
104 Nc6e32c6f9d644be4b06597c6bf3d8501 rdf:first Nbf270cae3b9e4274b848e156ed011fd8
105 rdf:rest N8bafafa48eb44cd68638904bacb8c146
106 Nd1a371a9c2e943dd97a7203f6501e5ca schema:volumeNumber 10
107 rdf:type schema:PublicationVolume
108 Ne5c999291adb4a4291c38c291bbb1f61 schema:name pubmed_id
109 schema:value 30670100
110 rdf:type schema:PropertyValue
111 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
112 schema:name Technology
113 rdf:type schema:DefinedTerm
114 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
115 schema:name Medical Biotechnology
116 rdf:type schema:DefinedTerm
117 sg:journal.1043222 schema:issn 1757-6512
118 schema:name Stem Cell Research & Therapy
119 rdf:type schema:Periodical
120 sg:person.01061755457.18 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
121 schema:familyName Han
122 schema:givenName Weiping
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061755457.18
124 rdf:type schema:Person
125 sg:person.01141063354.46 schema:affiliation https://www.grid.ac/institutes/grid.428397.3
126 schema:familyName Sugii
127 schema:givenName Shigeki
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141063354.46
129 rdf:type schema:Person
130 sg:person.013046477757.88 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
131 schema:familyName Lim
132 schema:givenName Tau En
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046477757.88
134 rdf:type schema:Person
135 sg:person.01364671546.47 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
136 schema:familyName Bhanu Prakash
137 schema:givenName K. N.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364671546.47
139 rdf:type schema:Person
140 sg:person.014344163650.29 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
141 schema:familyName Subramanian
142 schema:givenName Subha
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344163650.29
144 rdf:type schema:Person
145 sg:person.014426201570.10 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
146 schema:familyName Chakraborty
147 schema:givenName Smarajit
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426201570.10
149 rdf:type schema:Person
150 sg:pub.10.1007/978-1-62703-056-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013118222
151 https://doi.org/10.1007/978-1-62703-056-4_11
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ijo.2011.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018571498
154 https://doi.org/10.1038/ijo.2011.119
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nprot.2010.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016080500
157 https://doi.org/10.1038/nprot.2010.199
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nrm2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021087942
160 https://doi.org/10.1038/nrm2066
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/sj.ijo.0802777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051658348
163 https://doi.org/10.1038/sj.ijo.0802777
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/1479-5876-9-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020305766
166 https://doi.org/10.1186/1479-5876-9-47
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1080091322 schema:CreativeWork
169 https://doi.org/10.1002/cyto.a.22333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128083
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/stem.1607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052771890
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/b978-0-12-811920-4.00016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107148508
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.aanat.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013467335
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.biocel.2013.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016721129
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.febslet.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006283621
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.febslet.2011.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029020593
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jcyt.2012.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019544242
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jcyt.2013.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025657272
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.metabol.2015.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810795
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.stemcr.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049200094
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1017/erm.2014.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001497037
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c5sc02168e schema:sameAs https://app.dimensions.ai/details/publication/pub.1006348877
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1042/bj20121870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010570311
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1042/cbi20090299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010179952
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1089/ten.tec.2014.0513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032584467
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/mcse.2007.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398157
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/mcse.2007.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398159
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1753-4887.2007.00004.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026267722
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.294.5548.1866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019836988
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1172/jci103193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005981003
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1177/1087057107306502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019014095
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1194/jlr.d059758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064192752
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1194/jlr.m011320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035708225
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1210/me.2004-0539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064327426
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0079724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034270447
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2337/db06-0263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025966547
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2337/db15-1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070729733
224 rdf:type schema:CreativeWork
225 https://doi.org/10.4252/wjsc.v6.i4.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072402296
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5334/jors.ac schema:sameAs https://app.dimensions.ai/details/publication/pub.1011362754
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.428397.3 schema:alternateName Duke NUS Graduate Medical School
230 schema:name Duke-NUS Medical School, Singapore, Singapore
231 Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.452254.0 schema:alternateName Singapore Bioimaging Consortium
234 schema:name Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore
235 Signal and Image Processing Group, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way #02-02, 138667, Singapore, Singapore
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...