Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitrox View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-22

AUTHORS

Stuart Webb, Chase Gabrelow, James Pierce, Edwin Gibb, Jimmy Elliott

ABSTRACT

BACKGROUND: Previous studies have reported that adult mesenchymal stem cells (MSCs) tend to gradually lose their stem cell characteristics in vitro when placed outside their niche environment. They subsequently undergo spontaneous differentiation towards mesenchymal lineages after only a few passages. We observed a similar phenomenon with adult tendon stem cells (TSCs) where expression of key tendon genes such as Scleraxis (Scx), are being repressed with time in culture. We hypothesized that an environment able to restore or maintain Scleraxis expression could be of therapeutic interest for in vitro use and tendon cell-based therapies. METHODS: TSCs were isolated from human cadaveric Achilles tendon and expanded for 4 passages. A high content imaging assay that monitored the induction of Scx protein nuclear localization was used to screen ~1000 known drugs. RESULTS: We identified retinoic acid receptor (RAR) agonists as potent inducers of nuclear Scx in the small molecule screen. The upregulation correlated with improved maintenance of tendon stem cell properties through inhibition of spontaneous differentiation rather than the anticipated induction of tenogenic differentiation. Our results suggest that histone epigenetic modifications by RAR are driving this effect which is not likely only dependent on Scleraxis nuclear binding but also mediated through other key genes involved in stem cell self-renewal and differentiation. Furthermore, we demonstrate that the effect of RAR compounds on TSCs is reversible by revealing their multi-lineage differentiation ability upon withdrawal of the compound. CONCLUSION: Based on these findings, RAR agonists could provide a valid approach for maintaining TSC stemness during expansion in vitro, thus improving their regenerative potential for cell-based therapy. More... »

PAGES

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13287-016-0306-3

DOI

http://dx.doi.org/10.1186/s13287-016-0306-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005357550

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27001426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Achilles Tendon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Active Transport, Cell Nucleus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basic Helix-Loop-Helix Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inhibitory Concentration 50", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nicotinic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patellar Ligament", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Processing, Post-Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Retinoic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptional Activation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Stuart", 
        "id": "sg:person.01120672653.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120672653.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabrelow", 
        "givenName": "Chase", 
        "id": "sg:person.01167006053.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167006053.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pierce", 
        "givenName": "James", 
        "id": "sg:person.01235121253.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235121253.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibb", 
        "givenName": "Edwin", 
        "id": "sg:person.01303234453.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303234453.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elliott", 
        "givenName": "Jimmy", 
        "id": "sg:person.01351347653.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351347653.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm.2334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013166953", 
          "https://doi.org/10.1038/nm.2334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015973178", 
          "https://doi.org/10.1038/srep00977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00167-011-1685-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044348455", 
          "https://doi.org/10.1007/s00167-011-1685-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037338625", 
          "https://doi.org/10.1038/nrm1938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1423-0127-17-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036470498", 
          "https://doi.org/10.1186/1423-0127-17-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2474-11-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046156252", 
          "https://doi.org/10.1186/1471-2474-11-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043413899", 
          "https://doi.org/10.1038/nm1630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00774-012-0385-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003224444", 
          "https://doi.org/10.1007/s00774-012-0385-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-22", 
    "datePublishedReg": "2016-03-22", 
    "description": "BACKGROUND: Previous studies have reported that adult mesenchymal stem cells (MSCs) tend to gradually lose their stem cell characteristics in vitro when placed outside their niche environment. They subsequently undergo spontaneous differentiation towards mesenchymal lineages after only a few passages. We observed a similar phenomenon with adult tendon stem cells (TSCs) where expression of key tendon genes such as Scleraxis (Scx), are being repressed with time in culture. We hypothesized that an environment able to restore or maintain Scleraxis expression could be of therapeutic interest for in vitro use and tendon cell-based therapies.\nMETHODS: TSCs were isolated from human cadaveric Achilles tendon and expanded for 4 passages. A high content imaging assay that monitored the induction of Scx\u00a0protein nuclear localization was used to screen ~1000 known drugs.\nRESULTS: We identified retinoic acid receptor (RAR) agonists as potent inducers of nuclear Scx in the small molecule screen. The upregulation correlated with improved maintenance of tendon stem cell properties through inhibition of spontaneous differentiation rather than the anticipated induction of tenogenic differentiation. Our results suggest that histone epigenetic modifications by RAR are driving this effect which is not likely only dependent on Scleraxis nuclear binding but also mediated through other key genes involved in stem cell self-renewal and differentiation. Furthermore, we demonstrate that the effect of RAR compounds on TSCs is reversible by revealing their multi-lineage differentiation ability upon withdrawal of the compound.\nCONCLUSION: Based on these findings, RAR agonists could provide a valid approach for maintaining TSC stemness during expansion in vitro, thus improving their regenerative potential for cell-based therapy.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13287-016-0306-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043222", 
        "issn": [
          "1757-6512"
        ], 
        "name": "Stem Cell Research & Therapy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "stem cell characteristics", 
      "spontaneous differentiation", 
      "stem cells", 
      "tendon stem cells", 
      "mesenchymal stem cells", 
      "histone epigenetic modifications", 
      "protein nuclear localization", 
      "small-molecule screen", 
      "multi-lineage differentiation ability", 
      "adult mesenchymal stem cells", 
      "stem cell properties", 
      "cell-based therapies", 
      "retinoic acid receptors", 
      "epigenetic modifications", 
      "key genes", 
      "nuclear localization", 
      "cell characteristics", 
      "molecule screens", 
      "mesenchymal lineages", 
      "niche environment", 
      "scleraxis expression", 
      "tenogenic differentiation", 
      "differentiation ability", 
      "differentiation", 
      "cell properties", 
      "genes", 
      "regenerative potential", 
      "potent inducer", 
      "RAR agonists", 
      "acid receptors", 
      "therapeutic interest", 
      "cells", 
      "retinoic acid receptor agonist", 
      "expression", 
      "lineages", 
      "induction", 
      "scleraxis", 
      "SCX", 
      "stemness", 
      "inducer", 
      "binding", 
      "upregulation", 
      "nuclear binding", 
      "previous studies", 
      "RAR", 
      "assays", 
      "localization", 
      "improved maintenance", 
      "receptors", 
      "high content", 
      "screen", 
      "inhibition", 
      "maintenance", 
      "acid receptor agonists", 
      "similar phenomenon", 
      "valid approach", 
      "compounds", 
      "environment", 
      "modification", 
      "culture", 
      "agonists", 
      "passage", 
      "ability", 
      "effect", 
      "preserves", 
      "expansion", 
      "potential", 
      "content", 
      "receptor agonist", 
      "findings", 
      "study", 
      "characteristics", 
      "results", 
      "drugs", 
      "interest", 
      "approach", 
      "phenomenon", 
      "cadaveric Achilles tendons", 
      "therapy", 
      "use", 
      "time", 
      "properties", 
      "withdrawal", 
      "tendon", 
      "Achilles tendon", 
      "adult tendon stem cells", 
      "key tendon genes", 
      "tendon genes", 
      "tendon cell-based therapies", 
      "human cadaveric Achilles tendon", 
      "induction of Scx", 
      "nuclear Scx", 
      "tendon stem cell properties", 
      "anticipated induction", 
      "Scleraxis nuclear binding", 
      "RAR compounds", 
      "TSC stemness", 
      "vitrox"
    ], 
    "name": "Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitrox", 
    "pagination": "45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005357550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13287-016-0306-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27001426"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13287-016-0306-3", 
      "https://app.dimensions.ai/details/publication/pub.1005357550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_696.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13287-016-0306-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13287-016-0306-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13287-016-0306-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13287-016-0306-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13287-016-0306-3'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      22 PREDICATES      150 URIs      134 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13287-016-0306-3 schema:about N0fb03a698c6a41d6b41200b16c39cc27
2 N194a5d0531c2411fa2c890ef07387697
3 N1fa632540fa7442aa40751d88b8c2f62
4 N45395aca13fa45988b31594b2b101618
5 N4e13f710ad9a414ca113abc0e86b18ca
6 N50bee116df494b98ba78c85c1f70d6c2
7 N635e970a91cf41f6943d7f2cd6103b99
8 N6af5170112ff4809a8c841409624626c
9 N7514d667e2764a3f80acda18084b2a88
10 N8a1005db1f914a5f8513ff30b6e98f88
11 Nb83cb8f37d3a40f0a3c73fd8990208d7
12 Nc61a2fdbd4d64c7a84e195fc831641c7
13 Nc9fd0edc78bb461c85afe5ba4c1f0826
14 Nd54a9fec2fdb46debac1f2b05a1f21cf
15 Nd6968e1a70b24649a985eed13020fa00
16 Ne5fbe591e9c24ee4af5a830e509365c6
17 Neacc71cc281945e9baba9d68ab43f790
18 Nfcfa4a9d13f04724922f5909b4526025
19 anzsrc-for:06
20 anzsrc-for:0604
21 schema:author N297d6bc3fafc40408b1d9bee7b2d6797
22 schema:citation sg:pub.10.1007/s00167-011-1685-8
23 sg:pub.10.1007/s00774-012-0385-x
24 sg:pub.10.1038/nm.2334
25 sg:pub.10.1038/nm1630
26 sg:pub.10.1038/nrm1938
27 sg:pub.10.1038/srep00977
28 sg:pub.10.1186/1423-0127-17-64
29 sg:pub.10.1186/1471-2474-11-10
30 schema:datePublished 2016-03-22
31 schema:datePublishedReg 2016-03-22
32 schema:description BACKGROUND: Previous studies have reported that adult mesenchymal stem cells (MSCs) tend to gradually lose their stem cell characteristics in vitro when placed outside their niche environment. They subsequently undergo spontaneous differentiation towards mesenchymal lineages after only a few passages. We observed a similar phenomenon with adult tendon stem cells (TSCs) where expression of key tendon genes such as Scleraxis (Scx), are being repressed with time in culture. We hypothesized that an environment able to restore or maintain Scleraxis expression could be of therapeutic interest for in vitro use and tendon cell-based therapies. METHODS: TSCs were isolated from human cadaveric Achilles tendon and expanded for 4 passages. A high content imaging assay that monitored the induction of Scx protein nuclear localization was used to screen ~1000 known drugs. RESULTS: We identified retinoic acid receptor (RAR) agonists as potent inducers of nuclear Scx in the small molecule screen. The upregulation correlated with improved maintenance of tendon stem cell properties through inhibition of spontaneous differentiation rather than the anticipated induction of tenogenic differentiation. Our results suggest that histone epigenetic modifications by RAR are driving this effect which is not likely only dependent on Scleraxis nuclear binding but also mediated through other key genes involved in stem cell self-renewal and differentiation. Furthermore, we demonstrate that the effect of RAR compounds on TSCs is reversible by revealing their multi-lineage differentiation ability upon withdrawal of the compound. CONCLUSION: Based on these findings, RAR agonists could provide a valid approach for maintaining TSC stemness during expansion in vitro, thus improving their regenerative potential for cell-based therapy.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N1be5d56ff1114f5c86ba0627979bc4f3
37 N56a3caa7233d4dc993db2da8581710ac
38 sg:journal.1043222
39 schema:keywords Achilles tendon
40 RAR
41 RAR agonists
42 RAR compounds
43 SCX
44 Scleraxis nuclear binding
45 TSC stemness
46 ability
47 acid receptor agonists
48 acid receptors
49 adult mesenchymal stem cells
50 adult tendon stem cells
51 agonists
52 anticipated induction
53 approach
54 assays
55 binding
56 cadaveric Achilles tendons
57 cell characteristics
58 cell properties
59 cell-based therapies
60 cells
61 characteristics
62 compounds
63 content
64 culture
65 differentiation
66 differentiation ability
67 drugs
68 effect
69 environment
70 epigenetic modifications
71 expansion
72 expression
73 findings
74 genes
75 high content
76 histone epigenetic modifications
77 human cadaveric Achilles tendon
78 improved maintenance
79 inducer
80 induction
81 induction of Scx
82 inhibition
83 interest
84 key genes
85 key tendon genes
86 lineages
87 localization
88 maintenance
89 mesenchymal lineages
90 mesenchymal stem cells
91 modification
92 molecule screens
93 multi-lineage differentiation ability
94 niche environment
95 nuclear Scx
96 nuclear binding
97 nuclear localization
98 passage
99 phenomenon
100 potent inducer
101 potential
102 preserves
103 previous studies
104 properties
105 protein nuclear localization
106 receptor agonist
107 receptors
108 regenerative potential
109 results
110 retinoic acid receptor agonist
111 retinoic acid receptors
112 scleraxis
113 scleraxis expression
114 screen
115 similar phenomenon
116 small-molecule screen
117 spontaneous differentiation
118 stem cell characteristics
119 stem cell properties
120 stem cells
121 stemness
122 study
123 tendon
124 tendon cell-based therapies
125 tendon genes
126 tendon stem cell properties
127 tendon stem cells
128 tenogenic differentiation
129 therapeutic interest
130 therapy
131 time
132 upregulation
133 use
134 valid approach
135 vitrox
136 withdrawal
137 schema:name Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitrox
138 schema:pagination 45
139 schema:productId N0a6b729f4a364efa958a6f19269b6fab
140 N41b980ea96944182940af8346a03027d
141 N6f50685a9460460ea6828c9ab424dc90
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005357550
143 https://doi.org/10.1186/s13287-016-0306-3
144 schema:sdDatePublished 2021-12-01T19:36
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher Nc01491b35d294a09b9dc56d27d02be0a
147 schema:url https://doi.org/10.1186/s13287-016-0306-3
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N0a6b729f4a364efa958a6f19269b6fab schema:name pubmed_id
152 schema:value 27001426
153 rdf:type schema:PropertyValue
154 N0fb03a698c6a41d6b41200b16c39cc27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult Stem Cells
156 rdf:type schema:DefinedTerm
157 N194a5d0531c2411fa2c890ef07387697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Signal Transduction
159 rdf:type schema:DefinedTerm
160 N1be5d56ff1114f5c86ba0627979bc4f3 schema:issueNumber 1
161 rdf:type schema:PublicationIssue
162 N1fa632540fa7442aa40751d88b8c2f62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Middle Aged
164 rdf:type schema:DefinedTerm
165 N297d6bc3fafc40408b1d9bee7b2d6797 rdf:first sg:person.01120672653.36
166 rdf:rest N880255d2fb844bb48572285a5822ef43
167 N41b980ea96944182940af8346a03027d schema:name dimensions_id
168 schema:value pub.1005357550
169 rdf:type schema:PropertyValue
170 N45395aca13fa45988b31594b2b101618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Protein Processing, Post-Translational
172 rdf:type schema:DefinedTerm
173 N4e13f710ad9a414ca113abc0e86b18ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Inhibitory Concentration 50
175 rdf:type schema:DefinedTerm
176 N50bee116df494b98ba78c85c1f70d6c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Achilles Tendon
178 rdf:type schema:DefinedTerm
179 N5604aba4b69143318dd5e6da8819875e rdf:first sg:person.01303234453.00
180 rdf:rest Necb2e9c003c84f1f9f2c64dcaadb7e71
181 N56a3caa7233d4dc993db2da8581710ac schema:volumeNumber 7
182 rdf:type schema:PublicationVolume
183 N635e970a91cf41f6943d7f2cd6103b99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Methylation
185 rdf:type schema:DefinedTerm
186 N6af5170112ff4809a8c841409624626c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Nicotinic Acids
188 rdf:type schema:DefinedTerm
189 N6f50685a9460460ea6828c9ab424dc90 schema:name doi
190 schema:value 10.1186/s13287-016-0306-3
191 rdf:type schema:PropertyValue
192 N7514d667e2764a3f80acda18084b2a88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Active Transport, Cell Nucleus
194 rdf:type schema:DefinedTerm
195 N880255d2fb844bb48572285a5822ef43 rdf:first sg:person.01167006053.16
196 rdf:rest Nd8c8fbb82b4c4af3a6bd631dbe16a0c5
197 N8a1005db1f914a5f8513ff30b6e98f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Receptors, Retinoic Acid
199 rdf:type schema:DefinedTerm
200 Nb83cb8f37d3a40f0a3c73fd8990208d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Cell Proliferation
202 rdf:type schema:DefinedTerm
203 Nc01491b35d294a09b9dc56d27d02be0a schema:name Springer Nature - SN SciGraph project
204 rdf:type schema:Organization
205 Nc61a2fdbd4d64c7a84e195fc831641c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Humans
207 rdf:type schema:DefinedTerm
208 Nc9fd0edc78bb461c85afe5ba4c1f0826 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Transcriptional Activation
210 rdf:type schema:DefinedTerm
211 Nd54a9fec2fdb46debac1f2b05a1f21cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Histones
213 rdf:type schema:DefinedTerm
214 Nd6968e1a70b24649a985eed13020fa00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Cells, Cultured
216 rdf:type schema:DefinedTerm
217 Nd8c8fbb82b4c4af3a6bd631dbe16a0c5 rdf:first sg:person.01235121253.18
218 rdf:rest N5604aba4b69143318dd5e6da8819875e
219 Ne5fbe591e9c24ee4af5a830e509365c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
220 schema:name Basic Helix-Loop-Helix Transcription Factors
221 rdf:type schema:DefinedTerm
222 Neacc71cc281945e9baba9d68ab43f790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Cell Differentiation
224 rdf:type schema:DefinedTerm
225 Necb2e9c003c84f1f9f2c64dcaadb7e71 rdf:first sg:person.01351347653.12
226 rdf:rest rdf:nil
227 Nfcfa4a9d13f04724922f5909b4526025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Patellar Ligament
229 rdf:type schema:DefinedTerm
230 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
231 schema:name Biological Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
234 schema:name Genetics
235 rdf:type schema:DefinedTerm
236 sg:journal.1043222 schema:issn 1757-6512
237 schema:name Stem Cell Research & Therapy
238 schema:publisher Springer Nature
239 rdf:type schema:Periodical
240 sg:person.01120672653.36 schema:affiliation grid-institutes:grid.418185.1
241 schema:familyName Webb
242 schema:givenName Stuart
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120672653.36
244 rdf:type schema:Person
245 sg:person.01167006053.16 schema:affiliation grid-institutes:grid.418185.1
246 schema:familyName Gabrelow
247 schema:givenName Chase
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167006053.16
249 rdf:type schema:Person
250 sg:person.01235121253.18 schema:affiliation grid-institutes:grid.418185.1
251 schema:familyName Pierce
252 schema:givenName James
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235121253.18
254 rdf:type schema:Person
255 sg:person.01303234453.00 schema:affiliation grid-institutes:grid.418185.1
256 schema:familyName Gibb
257 schema:givenName Edwin
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303234453.00
259 rdf:type schema:Person
260 sg:person.01351347653.12 schema:affiliation grid-institutes:grid.418185.1
261 schema:familyName Elliott
262 schema:givenName Jimmy
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351347653.12
264 rdf:type schema:Person
265 sg:pub.10.1007/s00167-011-1685-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044348455
266 https://doi.org/10.1007/s00167-011-1685-8
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00774-012-0385-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003224444
269 https://doi.org/10.1007/s00774-012-0385-x
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/nm.2334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013166953
272 https://doi.org/10.1038/nm.2334
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/nm1630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043413899
275 https://doi.org/10.1038/nm1630
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/nrm1938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338625
278 https://doi.org/10.1038/nrm1938
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/srep00977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015973178
281 https://doi.org/10.1038/srep00977
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/1423-0127-17-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036470498
284 https://doi.org/10.1186/1423-0127-17-64
285 rdf:type schema:CreativeWork
286 sg:pub.10.1186/1471-2474-11-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046156252
287 https://doi.org/10.1186/1471-2474-11-10
288 rdf:type schema:CreativeWork
289 grid-institutes:grid.418185.1 schema:alternateName Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA
290 schema:name Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 USA
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...