Pre-operative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: correlation and progression-free survival analyses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Coral Durand-Muñoz, Eduardo Flores-Alvarez, Sergio Moreno-Jimenez, Ernesto Roldan-Valadez

ABSTRACT

OBJECTIVES: Glioblastoma (GB) contains diverse histologic regions. Apparent diffusion coefficient (ADC) values are surrogates for the degree of number of cells within the tumour regions. Because an assessment of ADC values and volumes within tumour sub-compartments of GB is missing in the literature, we aimed to evaluate these associations. METHODS: A retrospective cohort of 48 patients with GB underwent segmentation to calculate tumour region volumes (in cubic centimetre) and ADC values in tumour regions: normal tissue, enhancing tumour, proximal oedema, distal oedema, and necrosis. Correlation, Kaplan-Meier, and Cox hazard regression analyses were performed. RESULTS: We found a statistically significant difference among ADC values for tumour regions: F (4, 220) = 166.71 and p ≤ .001 and tumour region volumes (necrosis, enhancing tumour, peritumoural oedema): F (2, 141) = 136.3 and p ≤ .001. Post hoc comparisons indicated that the only significantly different mean score was the peritumoural volume in oedema region (p < .001). We observed a positive significant correlation between ADC of distal oedema and peritumoural volume, r = .418, df = 34, and p = .011. Cox proportional hazards regression analysis considering only tumour region volumes provided an almost significant model: - 2 log-likelihood = 146.066, χ2 (4) = 9.303, and p = .054 with a trend towards significance of the hazard function: p = .067 and HR = 1.077 for the non-enhancing tumour volume. CONCLUSIONS: ADC values together with volumes of oedema region might have a role as predictors of progression-free survival (PFS) in patients with GB; we recommend a routine MRI assessment with the calculation of these biomarkers in GB. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13244-019-0724-8

DOI

http://dx.doi.org/10.1186/s13244-019-0724-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112851700

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30887267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital M\u00e9dica Sur", 
          "id": "https://www.grid.ac/institutes/grid.414741.3", 
          "name": [
            "Department of Internal Medicine, Medica Sur Clinic and Foundation, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand-Mu\u00f1oz", 
        "givenName": "Coral", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital General de M\u00e9xico", 
          "id": "https://www.grid.ac/institutes/grid.414716.1", 
          "name": [
            "Department of Neurosurgery, Secretariat of Health, General Hospital of Mexico, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flores-Alvarez", 
        "givenName": "Eduardo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Neurolog\u00eda y Neurocirug\u00eda", 
          "id": "https://www.grid.ac/institutes/grid.419204.a", 
          "name": [
            "Radioneurosurgery Unit, The National Institute of Neurology and Neurosurgery, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno-Jimenez", 
        "givenName": "Sergio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sechenov University", 
          "id": "https://www.grid.ac/institutes/grid.448878.f", 
          "name": [
            "Directorate of Research, Secretariat of Health, General Hospital of Mexico, Mexico City, Mexico", 
            "Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8, b. 2, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roldan-Valadez", 
        "givenName": "Ernesto", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/neuonc/nor079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004642312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fneur.2015.00033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200101113440207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007928192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.16.6.8946545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009800018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012506874", 
          "https://doi.org/10.1038/srep23376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ol.2015.3639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013204217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ol.2015.3639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013204217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2601-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014081265", 
          "https://doi.org/10.1007/s00330-012-2601-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3340/jkns.2015.58.4.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021580205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000328916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025388772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000324758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026077253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015142173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029943148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/raon-2014-0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030819952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2688-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030841442", 
          "https://doi.org/10.1007/s00330-012-2688-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032805202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032805202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13120118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033609617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2432060450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035946957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35052535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036220926", 
          "https://doi.org/10.1038/35052535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35052535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036220926", 
          "https://doi.org/10.1038/35052535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/15228517-2007-023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038180386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039146433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-1331.2009.02613.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043039682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.26.3541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043187529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-015-2005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047243386", 
          "https://doi.org/10.1007/s11060-015-2005-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2413051276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047855613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-11-127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049220180", 
          "https://doi.org/10.1186/1471-2407-11-127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050378150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-015-1743-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408403", 
          "https://doi.org/10.1007/s11060-015-1743-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa043330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052112015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00598951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252182", 
          "https://doi.org/10.1007/bf00598951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00598951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252182", 
          "https://doi.org/10.1007/bf00598951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/nor133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052849539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1987.66.6.0865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071094692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1987.66.6.0865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071094692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.1987.66.6.0865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071094692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5137/1019-5149.jtn.2461-09.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072627490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5709/acp-0133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078143511", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.170.1.2535765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078996420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0174620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084623797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-16-2844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-16-2844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090389558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.18003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091935843"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "OBJECTIVES: Glioblastoma (GB) contains diverse histologic regions. Apparent diffusion coefficient (ADC) values are surrogates for the degree of number of cells within the tumour regions. Because an assessment of ADC values and volumes within tumour sub-compartments of GB is missing in the literature, we aimed to evaluate these associations.\nMETHODS: A retrospective cohort of 48 patients with GB underwent segmentation to calculate tumour region volumes (in cubic centimetre) and ADC values in tumour regions: normal tissue, enhancing tumour, proximal oedema, distal oedema, and necrosis. Correlation, Kaplan-Meier, and Cox hazard regression analyses were performed.\nRESULTS: We found a statistically significant difference among ADC values for tumour regions: F (4, 220)\u2009=\u2009166.71 and p\u2009\u2264\u2009.001 and tumour region volumes (necrosis, enhancing tumour, peritumoural oedema): F (2, 141)\u2009=\u2009136.3 and p\u2009\u2264\u2009.001. Post hoc comparisons indicated that the only significantly different mean score was the peritumoural volume in oedema region (p\u2009<\u2009.001). We observed a positive significant correlation between ADC of distal oedema and peritumoural volume, r\u2009=\u2009.418, df\u2009=\u200934, and p\u2009=\u2009.011. Cox proportional hazards regression analysis considering only tumour region volumes provided an almost significant model: -\u20092 log-likelihood\u2009=\u2009146.066, \u03c72 (4)\u2009=\u20099.303, and p\u2009=\u2009.054 with a trend towards significance of the hazard function: p\u2009=\u2009.067 and HR\u2009=\u20091.077 for the non-enhancing tumour volume.\nCONCLUSIONS: ADC values together with volumes of oedema region might have a role as predictors of progression-free survival (PFS) in patients with GB; we recommend a routine MRI assessment with the calculation of these biomarkers in GB.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13244-019-0724-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043606", 
        "issn": [
          "1869-4101"
        ], 
        "name": "Insights into Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Pre-operative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: correlation and progression-free survival analyses", 
    "pagination": "36", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13244-019-0724-8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d09f81341aa05ec5dc1bfdd76dfe001979b80c37afdc7dde7e325f92d23820b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112851700"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101532453"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30887267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13244-019-0724-8", 
      "https://app.dimensions.ai/details/publication/pub.1112851700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13244-019-0724-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13244-019-0724-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13244-019-0724-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13244-019-0724-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13244-019-0724-8'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13244-019-0724-8 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nde6be809e6ac465c9242295aca9c2561
4 schema:citation sg:pub.10.1007/bf00598951
5 sg:pub.10.1007/s00330-012-2601-4
6 sg:pub.10.1007/s00330-012-2688-7
7 sg:pub.10.1007/s11060-015-1743-z
8 sg:pub.10.1007/s11060-015-2005-9
9 sg:pub.10.1038/35052535
10 sg:pub.10.1038/srep23376
11 sg:pub.10.1186/1471-2407-11-127
12 https://app.dimensions.ai/details/publication/pub.1078143511
13 https://doi.org/10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2
14 https://doi.org/10.1002/jmri.24258
15 https://doi.org/10.1016/j.ijrobp.2005.08.015
16 https://doi.org/10.1056/nejm200101113440207
17 https://doi.org/10.1056/nejmoa043330
18 https://doi.org/10.1093/neuonc/nor079
19 https://doi.org/10.1093/neuonc/nor133
20 https://doi.org/10.1111/j.1468-1331.2009.02613.x
21 https://doi.org/10.1148/radiographics.16.6.8946545
22 https://doi.org/10.1148/radiol.13120118
23 https://doi.org/10.1148/radiol.2015142173
24 https://doi.org/10.1148/radiol.2413051276
25 https://doi.org/10.1148/radiol.2432060450
26 https://doi.org/10.1148/radiology.170.1.2535765
27 https://doi.org/10.1158/1078-0432.ccr-16-2844
28 https://doi.org/10.1159/000324758
29 https://doi.org/10.1159/000328916
30 https://doi.org/10.1200/jco.2009.26.3541
31 https://doi.org/10.1215/15228517-2007-023
32 https://doi.org/10.1259/bjr.20150502
33 https://doi.org/10.1371/journal.pone.0174620
34 https://doi.org/10.2214/ajr.17.18003
35 https://doi.org/10.2478/raon-2014-0004
36 https://doi.org/10.3171/jns.1987.66.6.0865
37 https://doi.org/10.3340/jkns.2015.58.4.379
38 https://doi.org/10.3389/fneur.2015.00033
39 https://doi.org/10.3892/ol.2015.3639
40 https://doi.org/10.5137/1019-5149.jtn.2461-09.4
41 https://doi.org/10.5709/acp-0133-x
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description OBJECTIVES: Glioblastoma (GB) contains diverse histologic regions. Apparent diffusion coefficient (ADC) values are surrogates for the degree of number of cells within the tumour regions. Because an assessment of ADC values and volumes within tumour sub-compartments of GB is missing in the literature, we aimed to evaluate these associations. METHODS: A retrospective cohort of 48 patients with GB underwent segmentation to calculate tumour region volumes (in cubic centimetre) and ADC values in tumour regions: normal tissue, enhancing tumour, proximal oedema, distal oedema, and necrosis. Correlation, Kaplan-Meier, and Cox hazard regression analyses were performed. RESULTS: We found a statistically significant difference among ADC values for tumour regions: F (4, 220) = 166.71 and p ≤ .001 and tumour region volumes (necrosis, enhancing tumour, peritumoural oedema): F (2, 141) = 136.3 and p ≤ .001. Post hoc comparisons indicated that the only significantly different mean score was the peritumoural volume in oedema region (p < .001). We observed a positive significant correlation between ADC of distal oedema and peritumoural volume, r = .418, df = 34, and p = .011. Cox proportional hazards regression analysis considering only tumour region volumes provided an almost significant model: - 2 log-likelihood = 146.066, χ2 (4) = 9.303, and p = .054 with a trend towards significance of the hazard function: p = .067 and HR = 1.077 for the non-enhancing tumour volume. CONCLUSIONS: ADC values together with volumes of oedema region might have a role as predictors of progression-free survival (PFS) in patients with GB; we recommend a routine MRI assessment with the calculation of these biomarkers in GB.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Nd17c40662f1945ccba815f1866647df4
49 Nd6aed39bc89541c2a05ee29328c7bf28
50 sg:journal.1043606
51 schema:name Pre-operative apparent diffusion coefficient values and tumour region volumes as prognostic biomarkers in glioblastoma: correlation and progression-free survival analyses
52 schema:pagination 36
53 schema:productId N3476b79576ef44f8a15cdf7994d4e4b8
54 N424c3cf2440f469ea7cd1e00aca30f79
55 N4772307783b14f43841bedfe966e08cc
56 N95b0ee8a2dcc4690b592cad8f9ffa3c5
57 Nf6e8674bd11645dba783d9e60e6e99f1
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112851700
59 https://doi.org/10.1186/s13244-019-0724-8
60 schema:sdDatePublished 2019-04-15T09:02
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf30aa5a399194d6898f52aab74ea5820
63 schema:url https://link.springer.com/10.1186%2Fs13244-019-0724-8
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N3476b79576ef44f8a15cdf7994d4e4b8 schema:name doi
68 schema:value 10.1186/s13244-019-0724-8
69 rdf:type schema:PropertyValue
70 N3f46034854e0412ea7c8c8da8ecd3acc rdf:first N9e5e87c5de80455d858285068a3a89f6
71 rdf:rest rdf:nil
72 N424c3cf2440f469ea7cd1e00aca30f79 schema:name dimensions_id
73 schema:value pub.1112851700
74 rdf:type schema:PropertyValue
75 N4772307783b14f43841bedfe966e08cc schema:name nlm_unique_id
76 schema:value 101532453
77 rdf:type schema:PropertyValue
78 N56a8d65ee8a84438b5e6ad21584116fa rdf:first Na87f8caff8e243bdb6818d1b8b5156e6
79 rdf:rest N3f46034854e0412ea7c8c8da8ecd3acc
80 N7759f4cec1074fc59eb5742ac61f4b5c schema:affiliation https://www.grid.ac/institutes/grid.414716.1
81 schema:familyName Flores-Alvarez
82 schema:givenName Eduardo
83 rdf:type schema:Person
84 N95b0ee8a2dcc4690b592cad8f9ffa3c5 schema:name pubmed_id
85 schema:value 30887267
86 rdf:type schema:PropertyValue
87 N9e5e87c5de80455d858285068a3a89f6 schema:affiliation https://www.grid.ac/institutes/grid.448878.f
88 schema:familyName Roldan-Valadez
89 schema:givenName Ernesto
90 rdf:type schema:Person
91 Na87f8caff8e243bdb6818d1b8b5156e6 schema:affiliation https://www.grid.ac/institutes/grid.419204.a
92 schema:familyName Moreno-Jimenez
93 schema:givenName Sergio
94 rdf:type schema:Person
95 Nbe8a540bae4d41c6ab14890ca0bc8325 rdf:first N7759f4cec1074fc59eb5742ac61f4b5c
96 rdf:rest N56a8d65ee8a84438b5e6ad21584116fa
97 Nd17c40662f1945ccba815f1866647df4 schema:volumeNumber 10
98 rdf:type schema:PublicationVolume
99 Nd6aed39bc89541c2a05ee29328c7bf28 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Nde6be809e6ac465c9242295aca9c2561 rdf:first Nfddf3b8e120d44da950ba4fbdae6ce15
102 rdf:rest Nbe8a540bae4d41c6ab14890ca0bc8325
103 Nf30aa5a399194d6898f52aab74ea5820 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nf6e8674bd11645dba783d9e60e6e99f1 schema:name readcube_id
106 schema:value 3d09f81341aa05ec5dc1bfdd76dfe001979b80c37afdc7dde7e325f92d23820b
107 rdf:type schema:PropertyValue
108 Nfddf3b8e120d44da950ba4fbdae6ce15 schema:affiliation https://www.grid.ac/institutes/grid.414741.3
109 schema:familyName Durand-Muñoz
110 schema:givenName Coral
111 rdf:type schema:Person
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
116 schema:name Oncology and Carcinogenesis
117 rdf:type schema:DefinedTerm
118 sg:journal.1043606 schema:issn 1869-4101
119 schema:name Insights into Imaging
120 rdf:type schema:Periodical
121 sg:pub.10.1007/bf00598951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252182
122 https://doi.org/10.1007/bf00598951
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00330-012-2601-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014081265
125 https://doi.org/10.1007/s00330-012-2601-4
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00330-012-2688-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841442
128 https://doi.org/10.1007/s00330-012-2688-7
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11060-015-1743-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408403
131 https://doi.org/10.1007/s11060-015-1743-z
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11060-015-2005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047243386
134 https://doi.org/10.1007/s11060-015-2005-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/35052535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036220926
137 https://doi.org/10.1038/35052535
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep23376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012506874
140 https://doi.org/10.1038/srep23376
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2407-11-127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220180
143 https://doi.org/10.1186/1471-2407-11-127
144 rdf:type schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1078143511 schema:CreativeWork
146 https://doi.org/10.1002/(sici)1522-2586(199901)9:1<53::aid-jmri7>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050378150
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/jmri.24258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039146433
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ijrobp.2005.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032805202
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1056/nejm200101113440207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007928192
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1056/nejmoa043330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052112015
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/neuonc/nor079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004642312
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/neuonc/nor133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052849539
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1468-1331.2009.02613.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043039682
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1148/radiographics.16.6.8946545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009800018
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1148/radiol.13120118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033609617
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiol.2015142173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029943148
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1148/radiol.2413051276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047855613
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1148/radiol.2432060450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035946957
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1148/radiology.170.1.2535765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078996420
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1158/1078-0432.ccr-16-2844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090389558
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1159/000324758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026077253
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1159/000328916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025388772
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1200/jco.2009.26.3541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043187529
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1215/15228517-2007-023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038180386
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1259/bjr.20150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565752
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1371/journal.pone.0174620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084623797
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2214/ajr.17.18003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091935843
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2478/raon-2014-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030819952
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3171/jns.1987.66.6.0865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071094692
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3340/jkns.2015.58.4.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021580205
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3389/fneur.2015.00033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014323
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3892/ol.2015.3639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013204217
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5137/1019-5149.jtn.2461-09.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072627490
201 rdf:type schema:CreativeWork
202 https://doi.org/10.5709/acp-0133-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080944
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.414716.1 schema:alternateName Hospital General de México
205 schema:name Department of Neurosurgery, Secretariat of Health, General Hospital of Mexico, Mexico City, Mexico
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.414741.3 schema:alternateName Hospital Médica Sur
208 schema:name Department of Internal Medicine, Medica Sur Clinic and Foundation, Mexico City, Mexico
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.419204.a schema:alternateName Instituto Nacional de Neurología y Neurocirugía
211 schema:name Radioneurosurgery Unit, The National Institute of Neurology and Neurosurgery, Mexico City, Mexico
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.448878.f schema:alternateName Sechenov University
214 schema:name Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8, b. 2, 119992, Moscow, Russia
215 Directorate of Research, Secretariat of Health, General Hospital of Mexico, Mexico City, Mexico
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...