Prediction learning in adults with autism and its molecular correlates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-06

AUTHORS

Laurie-Anne Sapey-Triomphe, Joke Temmerman, Nicolaas A. J. Puts, Johan Wagemans

ABSTRACT

BackgroundAccording to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates.MethodsTwenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus).ResultsNeurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group.LimitationsWe used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions.ConclusionsAutistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts. More... »

PAGES

64

References to SciGraph publications

  • 2012-07-26. The Relationship between Sensory Sensitivity and Autistic Traits in the General Population in JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
  • 2018-05-25. Glutamate and GABA in autism spectrum disorder—a translational magnetic resonance spectroscopy study in man and rodent models in TRANSLATIONAL PSYCHIATRY
  • 2021-01-05. Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability in TRANSLATIONAL PSYCHIATRY
  • 2020-01-14. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury in SCIENTIFIC REPORTS
  • 2016-02-10. The Relationship Between Intolerance of Uncertainty, Sensory Sensitivities, and Anxiety in Autistic and Typically Developing Children in JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
  • 2009-05-28. From drugs to deprivation: a Bayesian framework for understanding models of psychosis in PSYCHOPHARMACOLOGY
  • 2011-07-27. Neocortical excitation/inhibition balance in information processing and social dysfunction in NATURE
  • 2010-01-13. The free-energy principle: a unified brain theory? in NATURE REVIEWS NEUROSCIENCE
  • 2021-07-29. Region-specific elevations of glutamate + glutamine correlate with the sensory symptoms of autism spectrum disorders in TRANSLATIONAL PSYCHIATRY
  • 2005-06. Screening Adults for Asperger Syndrome Using the AQ: A Preliminary Study of its Diagnostic Validity in Clinical Practice in JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
  • 2017-05-23. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder in TRANSLATIONAL PSYCHIATRY
  • 2020-05-18. Excitation-inhibition balance and auditory multistable perception are correlated with autistic traits and schizotypy in a non-clinical population in SCIENTIFIC REPORTS
  • 2019-01-14. Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia in NATURE NEUROSCIENCE
  • 2013-07-09. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study in TRANSLATIONAL PSYCHIATRY
  • 2017-07-31. Adults with autism overestimate the volatility of the sensory environment in NATURE NEUROSCIENCE
  • 2010-09-22. Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference in NEUROPSYCHOPHARMACOLOGY
  • 2017-10-19. Altered behavioral and amygdala habituation in high-functioning adults with autism spectrum disorder: an fMRI study in SCIENTIFIC REPORTS
  • 2017-03-07. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study in MOLECULAR AUTISM
  • 2001-02. The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Malesand Females, Scientists and Mathematicians in JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
  • 2021-08-10. Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network in SCIENTIFIC REPORTS
  • 2014-11-19. Magnetic resonance spectroscopy comparing adults with high functioning autism and above average IQ in MOLECULAR PSYCHIATRY
  • 2013-11-24. Intolerance of Uncertainty as a Framework for Understanding Anxiety in Children and Adolescents with Autism Spectrum Disorders in JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS
  • 2012-01-17. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies in TRANSLATIONAL PSYCHIATRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13229-021-00470-6

    DOI

    http://dx.doi.org/10.1186/s13229-021-00470-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141637113

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34615532


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Autism Spectrum Disorder", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Autistic Disorder", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glutamic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Spectroscopy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium", 
                "Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sapey-Triomphe", 
            "givenName": "Laurie-Anne", 
            "id": "sg:person.01220042626.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220042626.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Temmerman", 
            "givenName": "Joke", 
            "id": "sg:person.011606117530.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606117530.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Centre for Neurodevelopmental Disorders, King\u2019s College London, SE5 8AF, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, King\u2019s College London, SE5 8AF, London, UK", 
                "MRC Centre for Neurodevelopmental Disorders, King\u2019s College London, SE5 8AF, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Puts", 
            "givenName": "Nicolaas A. J.", 
            "id": "sg:person.01176172115.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176172115.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium", 
                "Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagemans", 
            "givenName": "Johan", 
            "id": "sg:person.01161024426.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161024426.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10803-005-3300-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015321032", 
              "https://doi.org/10.1007/s10803-005-3300-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13229-017-0122-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084252366", 
              "https://doi.org/10.1186/s13229-017-0122-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2014.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051860995", 
              "https://doi.org/10.1038/mp.2014.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41593-018-0308-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111348295", 
              "https://doi.org/10.1038/s41593-018-0308-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-14097-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092212999", 
              "https://doi.org/10.1038/s41598-017-14097-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090931040", 
              "https://doi.org/10.1038/nn.4615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tp.2011.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042234701", 
              "https://doi.org/10.1038/tp.2011.65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41398-021-01525-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140000833", 
              "https://doi.org/10.1038/s41398-021-01525-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030639357", 
              "https://doi.org/10.1038/nature10360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10803-013-2001-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855220", 
              "https://doi.org/10.1007/s10803-013-2001-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00213-009-1561-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001564961", 
              "https://doi.org/10.1007/s00213-009-1561-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-57205-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124073760", 
              "https://doi.org/10.1038/s41598-019-57205-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030973516", 
              "https://doi.org/10.1038/nrn2787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tp.2017.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085562234", 
              "https://doi.org/10.1038/tp.2017.104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41398-020-01158-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134384237", 
              "https://doi.org/10.1038/s41398-020-01158-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005653411471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015706061", 
              "https://doi.org/10.1023/a:1005653411471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tp.2013.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037576363", 
              "https://doi.org/10.1038/tp.2013.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-65126-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127687606", 
              "https://doi.org/10.1038/s41598-020-65126-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-95603-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140314897", 
              "https://doi.org/10.1038/s41598-021-95603-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41398-018-0155-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104233429", 
              "https://doi.org/10.1038/s41398-018-0155-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npp.2010.163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021945700", 
              "https://doi.org/10.1038/npp.2010.163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10803-012-1608-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023510529", 
              "https://doi.org/10.1007/s10803-012-1608-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10803-016-2721-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036087424", 
              "https://doi.org/10.1007/s10803-016-2721-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-06", 
        "datePublishedReg": "2021-10-06", 
        "description": "BackgroundAccording to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates.MethodsTwenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA\u2009+\u2009and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus).ResultsNeurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA\u2009+\u2009ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group.LimitationsWe used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions.ConclusionsAutistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA\u2009+\u2009in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13229-021-00470-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8584914", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043709", 
            "issn": [
              "2040-2392"
            ], 
            "name": "Molecular Autism", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "autism spectrum disorder", 
          "autistic adults", 
          "Bayesian hypothesis", 
          "right inferior frontal gyrus", 
          "atypical sensory sensitivity", 
          "associative learning task", 
          "inferior frontal gyrus", 
          "higher-level regions", 
          "neurotypical group", 
          "perceptual regions", 
          "ASD group", 
          "ASD individuals", 
          "sensory sensitivity", 
          "intact ability", 
          "frontal gyrus", 
          "neurobiological correlates", 
          "spectrum disorder", 
          "learning task", 
          "neurobiological differences", 
          "predictive mechanisms", 
          "prediction learning", 
          "frontal regions", 
          "probabilistic associations", 
          "sensory input", 
          "occipital cortex", 
          "certain contexts", 
          "volatile context", 
          "concentration of Glx", 
          "task", 
          "adults", 
          "correlates", 
          "individuals", 
          "MethodsTwenty-six", 
          "MRS datasets", 
          "percept", 
          "autism", 
          "best fit", 
          "gyrus", 
          "context", 
          "beliefs", 
          "ability", 
          "contingencies", 
          "hypothesis", 
          "learning", 
          "cortex", 
          "rotation direction", 
          "disorders", 
          "association", 
          "expectations", 
          "tone", 
          "difficulties", 
          "bias", 
          "sample size", 
          "Glx", 
          "prediction", 
          "group", 
          "fit", 
          "molecular correlates", 
          "BackgroundAccording", 
          "predictive ability", 
          "differences", 
          "correct prediction", 
          "mechanism", 
          "environment", 
          "direction", 
          "restrictive approach", 
          "dataset", 
          "input", 
          "accurate prediction", 
          "results", 
          "approach", 
          "contrast", 
          "exclusion", 
          "light", 
          "changes", 
          "MRS results", 
          "part", 
          "sensitivity", 
          "region", 
          "GABA", 
          "precision", 
          "dots", 
          "percentage", 
          "reduction", 
          "magnetic resonance spectroscopy measurements", 
          "size", 
          "glutamate", 
          "measurements", 
          "high ratio", 
          "spectra", 
          "MR spectra", 
          "ratio", 
          "concentration", 
          "spectroscopy measurements", 
          "LimitationsWe"
        ], 
        "name": "Prediction learning in adults with autism and its molecular correlates", 
        "pagination": "64", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141637113"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13229-021-00470-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34615532"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13229-021-00470-6", 
          "https://app.dimensions.ai/details/publication/pub.1141637113"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_888.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13229-021-00470-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13229-021-00470-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13229-021-00470-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13229-021-00470-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13229-021-00470-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    313 TRIPLES      22 PREDICATES      153 URIs      121 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13229-021-00470-6 schema:about N2c706fe5bc8c4593ba796261f87c0c6f
    2 N377107cf3d0544c7b91c8210600e48c1
    3 N564f340833be4dd385744ca1507e18a1
    4 N5c03594c54e8423abca489ef445b2e10
    5 Na967e2cb8bd54366b2780eb0dbdd75ad
    6 Nd220ea137e1c4bbc8373fa628c9937f0
    7 Ne9c4dd2b89824aee975a4e6921b50761
    8 Nfe9109ac54d4424db051d4040b0a80b6
    9 anzsrc-for:11
    10 anzsrc-for:1103
    11 anzsrc-for:1109
    12 schema:author Neec8bbe6c6af4b80ac7293da0e6750a9
    13 schema:citation sg:pub.10.1007/s00213-009-1561-0
    14 sg:pub.10.1007/s10803-005-3300-7
    15 sg:pub.10.1007/s10803-012-1608-7
    16 sg:pub.10.1007/s10803-013-2001-x
    17 sg:pub.10.1007/s10803-016-2721-9
    18 sg:pub.10.1023/a:1005653411471
    19 sg:pub.10.1038/mp.2014.160
    20 sg:pub.10.1038/nature10360
    21 sg:pub.10.1038/nn.4615
    22 sg:pub.10.1038/npp.2010.163
    23 sg:pub.10.1038/nrn2787
    24 sg:pub.10.1038/s41398-018-0155-1
    25 sg:pub.10.1038/s41398-020-01158-w
    26 sg:pub.10.1038/s41398-021-01525-1
    27 sg:pub.10.1038/s41593-018-0308-9
    28 sg:pub.10.1038/s41598-017-14097-2
    29 sg:pub.10.1038/s41598-019-57205-0
    30 sg:pub.10.1038/s41598-020-65126-6
    31 sg:pub.10.1038/s41598-021-95603-5
    32 sg:pub.10.1038/tp.2011.65
    33 sg:pub.10.1038/tp.2013.53
    34 sg:pub.10.1038/tp.2017.104
    35 sg:pub.10.1186/s13229-017-0122-3
    36 schema:datePublished 2021-10-06
    37 schema:datePublishedReg 2021-10-06
    38 schema:description BackgroundAccording to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates.MethodsTwenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus).ResultsNeurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group.LimitationsWe used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions.ConclusionsAutistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts.
    39 schema:genre article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N0085554b95c34b58ad876f8e0b148cbd
    43 Nae3c5aa2462c4fc797a263da17a3143d
    44 sg:journal.1043709
    45 schema:keywords ASD group
    46 ASD individuals
    47 BackgroundAccording
    48 Bayesian hypothesis
    49 GABA
    50 Glx
    51 LimitationsWe
    52 MR spectra
    53 MRS datasets
    54 MRS results
    55 MethodsTwenty-six
    56 ability
    57 accurate prediction
    58 adults
    59 approach
    60 association
    61 associative learning task
    62 atypical sensory sensitivity
    63 autism
    64 autism spectrum disorder
    65 autistic adults
    66 beliefs
    67 best fit
    68 bias
    69 certain contexts
    70 changes
    71 concentration
    72 concentration of Glx
    73 context
    74 contingencies
    75 contrast
    76 correct prediction
    77 correlates
    78 cortex
    79 dataset
    80 differences
    81 difficulties
    82 direction
    83 disorders
    84 dots
    85 environment
    86 exclusion
    87 expectations
    88 fit
    89 frontal gyrus
    90 frontal regions
    91 glutamate
    92 group
    93 gyrus
    94 high ratio
    95 higher-level regions
    96 hypothesis
    97 individuals
    98 inferior frontal gyrus
    99 input
    100 intact ability
    101 learning
    102 learning task
    103 light
    104 magnetic resonance spectroscopy measurements
    105 measurements
    106 mechanism
    107 molecular correlates
    108 neurobiological correlates
    109 neurobiological differences
    110 neurotypical group
    111 occipital cortex
    112 part
    113 percentage
    114 percept
    115 perceptual regions
    116 precision
    117 prediction
    118 prediction learning
    119 predictive ability
    120 predictive mechanisms
    121 probabilistic associations
    122 ratio
    123 reduction
    124 region
    125 restrictive approach
    126 results
    127 right inferior frontal gyrus
    128 rotation direction
    129 sample size
    130 sensitivity
    131 sensory input
    132 sensory sensitivity
    133 size
    134 spectra
    135 spectroscopy measurements
    136 spectrum disorder
    137 task
    138 tone
    139 volatile context
    140 schema:name Prediction learning in adults with autism and its molecular correlates
    141 schema:pagination 64
    142 schema:productId N2d3ccff411654e2590ed01daf6264065
    143 N80a12fa1db3d49f280d7417ca3d8777e
    144 N87e4e8823303429f984da56360f0095b
    145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141637113
    146 https://doi.org/10.1186/s13229-021-00470-6
    147 schema:sdDatePublished 2022-05-10T10:29
    148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    149 schema:sdPublisher N8aa8f76681dd43eca9c1176cdb11dcf1
    150 schema:url https://doi.org/10.1186/s13229-021-00470-6
    151 sgo:license sg:explorer/license/
    152 sgo:sdDataset articles
    153 rdf:type schema:ScholarlyArticle
    154 N0085554b95c34b58ad876f8e0b148cbd schema:issueNumber 1
    155 rdf:type schema:PublicationIssue
    156 N2c706fe5bc8c4593ba796261f87c0c6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Autistic Disorder
    158 rdf:type schema:DefinedTerm
    159 N2d3ccff411654e2590ed01daf6264065 schema:name doi
    160 schema:value 10.1186/s13229-021-00470-6
    161 rdf:type schema:PropertyValue
    162 N377107cf3d0544c7b91c8210600e48c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Autism Spectrum Disorder
    164 rdf:type schema:DefinedTerm
    165 N564f340833be4dd385744ca1507e18a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Glutamic Acid
    167 rdf:type schema:DefinedTerm
    168 N5c03594c54e8423abca489ef445b2e10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Humans
    170 rdf:type schema:DefinedTerm
    171 N7b279c22c7454f18a207c7b2713e433b rdf:first sg:person.01176172115.24
    172 rdf:rest Ndd515c0abb6d44a38ad00b662529ee0f
    173 N80a12fa1db3d49f280d7417ca3d8777e schema:name pubmed_id
    174 schema:value 34615532
    175 rdf:type schema:PropertyValue
    176 N87e4e8823303429f984da56360f0095b schema:name dimensions_id
    177 schema:value pub.1141637113
    178 rdf:type schema:PropertyValue
    179 N8aa8f76681dd43eca9c1176cdb11dcf1 schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 Na967e2cb8bd54366b2780eb0dbdd75ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Magnetic Resonance Spectroscopy
    183 rdf:type schema:DefinedTerm
    184 Nae3c5aa2462c4fc797a263da17a3143d schema:volumeNumber 12
    185 rdf:type schema:PublicationVolume
    186 Nd220ea137e1c4bbc8373fa628c9937f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Bayes Theorem
    188 rdf:type schema:DefinedTerm
    189 Nd2bda0892c48484eb8fc09f893288a29 rdf:first sg:person.011606117530.94
    190 rdf:rest N7b279c22c7454f18a207c7b2713e433b
    191 Ndd515c0abb6d44a38ad00b662529ee0f rdf:first sg:person.01161024426.05
    192 rdf:rest rdf:nil
    193 Ne9c4dd2b89824aee975a4e6921b50761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Magnetic Resonance Imaging
    195 rdf:type schema:DefinedTerm
    196 Neec8bbe6c6af4b80ac7293da0e6750a9 rdf:first sg:person.01220042626.57
    197 rdf:rest Nd2bda0892c48484eb8fc09f893288a29
    198 Nfe9109ac54d4424db051d4040b0a80b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Adult
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Medical and Health Sciences
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Clinical Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Neurosciences
    209 rdf:type schema:DefinedTerm
    210 sg:grant.8584914 http://pending.schema.org/fundedItem sg:pub.10.1186/s13229-021-00470-6
    211 rdf:type schema:MonetaryGrant
    212 sg:journal.1043709 schema:issn 2040-2392
    213 schema:name Molecular Autism
    214 schema:publisher Springer Nature
    215 rdf:type schema:Periodical
    216 sg:person.011606117530.94 schema:affiliation grid-institutes:grid.5596.f
    217 schema:familyName Temmerman
    218 schema:givenName Joke
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606117530.94
    220 rdf:type schema:Person
    221 sg:person.01161024426.05 schema:affiliation grid-institutes:grid.5596.f
    222 schema:familyName Wagemans
    223 schema:givenName Johan
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161024426.05
    225 rdf:type schema:Person
    226 sg:person.01176172115.24 schema:affiliation grid-institutes:grid.13097.3c
    227 schema:familyName Puts
    228 schema:givenName Nicolaas A. J.
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176172115.24
    230 rdf:type schema:Person
    231 sg:person.01220042626.57 schema:affiliation grid-institutes:grid.5596.f
    232 schema:familyName Sapey-Triomphe
    233 schema:givenName Laurie-Anne
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220042626.57
    235 rdf:type schema:Person
    236 sg:pub.10.1007/s00213-009-1561-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001564961
    237 https://doi.org/10.1007/s00213-009-1561-0
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s10803-005-3300-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321032
    240 https://doi.org/10.1007/s10803-005-3300-7
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s10803-012-1608-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023510529
    243 https://doi.org/10.1007/s10803-012-1608-7
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s10803-013-2001-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855220
    246 https://doi.org/10.1007/s10803-013-2001-x
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10803-016-2721-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036087424
    249 https://doi.org/10.1007/s10803-016-2721-9
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1023/a:1005653411471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015706061
    252 https://doi.org/10.1023/a:1005653411471
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/mp.2014.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051860995
    255 https://doi.org/10.1038/mp.2014.160
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature10360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639357
    258 https://doi.org/10.1038/nature10360
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nn.4615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090931040
    261 https://doi.org/10.1038/nn.4615
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/npp.2010.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021945700
    264 https://doi.org/10.1038/npp.2010.163
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nrn2787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030973516
    267 https://doi.org/10.1038/nrn2787
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41398-018-0155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104233429
    270 https://doi.org/10.1038/s41398-018-0155-1
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41398-020-01158-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1134384237
    273 https://doi.org/10.1038/s41398-020-01158-w
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41398-021-01525-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140000833
    276 https://doi.org/10.1038/s41398-021-01525-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/s41593-018-0308-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111348295
    279 https://doi.org/10.1038/s41593-018-0308-9
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/s41598-017-14097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092212999
    282 https://doi.org/10.1038/s41598-017-14097-2
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/s41598-019-57205-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124073760
    285 https://doi.org/10.1038/s41598-019-57205-0
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/s41598-020-65126-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127687606
    288 https://doi.org/10.1038/s41598-020-65126-6
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41598-021-95603-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140314897
    291 https://doi.org/10.1038/s41598-021-95603-5
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/tp.2011.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042234701
    294 https://doi.org/10.1038/tp.2011.65
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/tp.2013.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037576363
    297 https://doi.org/10.1038/tp.2013.53
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/tp.2017.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085562234
    300 https://doi.org/10.1038/tp.2017.104
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/s13229-017-0122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252366
    303 https://doi.org/10.1186/s13229-017-0122-3
    304 rdf:type schema:CreativeWork
    305 grid-institutes:grid.13097.3c schema:alternateName MRC Centre for Neurodevelopmental Disorders, King’s College London, SE5 8AF, London, UK
    306 schema:name Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, King’s College London, SE5 8AF, London, UK
    307 MRC Centre for Neurodevelopmental Disorders, King’s College London, SE5 8AF, London, UK
    308 rdf:type schema:Organization
    309 grid-institutes:grid.5596.f schema:alternateName Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
    310 Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
    311 schema:name Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
    312 Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
    313 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...