Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Fayçal Ben Bouallègue, Denis Mariano-Goulart, Pierre Payoux, the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

ABSTRACT

BACKGROUND: The relative performance of semi-quantitative amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) markers in diagnosing Alzheimer's disease (AD) and predicting the cognitive evolution of patients with mild cognitive impairment (MCI) is still debated. METHODS: Subjects from the Alzheimer's Disease Neuroimaging Initiative 2 with complete baseline cognitive assessment (Mini Mental State Examination, Clinical Dementia Rating [CDR] and Alzheimer's Disease Assessment Scale-Cognitive Subscale [ADAS-cog] scores), CSF collection (amyloid-β1-42 [Aβ], tau and phosphorylated tau) and 18F-florbetapir scans were included in our cross-sectional cohort. Among these, patients with MCI or substantial memory complaints constituted our longitudinal cohort and were followed for 30 ± 16 months. PET amyloid deposition was quantified using relative retention indices (standardised uptake value ratio [SUVr]) with respect to pontine, cerebellar and composite reference regions. Diagnostic and prognostic performance based on PET and CSF was evaluated using ROC analysis, multivariate linear regression and survival analysis with the Cox proportional hazards model. RESULTS: The cross-sectional study included 677 participants and revealed that pontine and composite SUVr values were better classifiers (AUC 0.88, diagnostic accuracy 85%) than CSF markers (AUC 0.83 and 0.85, accuracy 80% and 75%, for Aβ and tau, respectively). SUVr was a strong independent determinant of cognition in multivariate regression, whereas Aβ was not; tau was also a determinant, but to a lesser degree. Among the 396 patients from the longitudinal study, 82 (21%) converted to AD within 22 ± 13 months. Optimal SUVr thresholds to differentiate AD converters were quite similar to those of the cross-sectional study. Composite SUVr was the best AD classifier (AUC 0.86, sensitivity 88%, specificity 81%). In multivariate regression, baseline cognition (CDR and ADAS-cog) was the main predictor of subsequent cognitive decline. Pontine and composite SUVr were moderate but independent predictors of final status and CDR/ADAS-cog progression rate, whereas baseline CSF markers had a marginal influence. The adjusted HRs for AD conversion were 3.8 (p = 0.01) for PET profile, 1.2 (p = ns) for Aβ profile and 1.8 (p = 0.03) for tau profile. CONCLUSIONS: Semi-quantitative amyloid PET appears more powerful than CSF markers for AD grading and MCI prognosis in terms of cognitive decline and AD conversion. More... »

PAGES

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13195-017-0260-z

DOI

http://dx.doi.org/10.1186/s13195-017-0260-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084955268

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28441967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alzheimer Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amyloid beta-Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comorbidity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Fragments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "tau Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Lapeyronie", 
          "id": "https://www.grid.ac/institutes/grid.411572.4", 
          "name": [
            "Toulouse NeuroImaging Centre (ToNIC), Universit\u00e9 de Toulouse, Inserm/UPS, Toulouse, France", 
            "Nuclear Medicine Department, Purpan University Hospital, Toulouse, France", 
            "Nuclear Medicine Department, Lapeyronie University Hospital, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben Bouall\u00e8gue", 
        "givenName": "Fay\u00e7al", 
        "id": "sg:person.01102111342.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102111342.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Lapeyronie", 
          "id": "https://www.grid.ac/institutes/grid.411572.4", 
          "name": [
            "Nuclear Medicine Department, Lapeyronie University Hospital, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mariano-Goulart", 
        "givenName": "Denis", 
        "id": "sg:person.01370737637.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370737637.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Purpan", 
          "id": "https://www.grid.ac/institutes/grid.414282.9", 
          "name": [
            "Toulouse NeuroImaging Centre (ToNIC), Universit\u00e9 de Toulouse, Inserm/UPS, Toulouse, France", 
            "Nuclear Medicine Department, Purpan University Hospital, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Payoux", 
        "givenName": "Pierre", 
        "id": "sg:person.01232301242.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232301242.56"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "the Alzheimer\u2019s Disease Neuroimaging Initiative (ADNI)", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2967/jnumed.111.090340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002048165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(09)70299-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003108805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(14)70090-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004039747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneurol.2010.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004527065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(13)70044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005017445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(09)70139-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005551999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.21610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006522492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.21610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006522492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.114.148981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008088660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awq277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010781685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awq277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010781685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2010.08.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012384053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2016.3751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013699006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2015.1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014269453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014625244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-012-2237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016145551", 
          "https://doi.org/10.1007/s00259-012-2237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.11.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019815882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.23908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023439990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneurol.2011.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023756040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2004.039347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023762610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/alzrt62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023764378", 
          "https://doi.org/10.1186/alzrt62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(12)70142-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.34.7.939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-016-0172-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025577843", 
          "https://doi.org/10.1186/s13195-016-0172-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.114.149732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025911211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp-2014-308094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027209137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-012-9177-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027889779", 
          "https://doi.org/10.1007/s11682-012-9177-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-012-9177-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027889779", 
          "https://doi.org/10.1007/s11682-012-9177-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2013.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-016-0220-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028695474", 
          "https://doi.org/10.1186/s13195-016-0220-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-016-0220-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028695474", 
          "https://doi.org/10.1186/s13195-016-0220-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awu367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030984508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.289.16.2094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032781451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(07)70178-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032800719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2014.1358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034837150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/alzrt70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035003903", 
          "https://doi.org/10.1186/alzrt70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2014.4829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035611656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.23931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038667999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181cb3e25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181cb3e25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70355-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039309033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.65.11.1509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040961566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/mp.2014.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044329471", 
          "https://doi.org/10.1038/mp.2014.9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044788433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/aww015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045665691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneurol.2009.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046274326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.23650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048205653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.109009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048558096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhr271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051944939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acn3.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052358414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneurol.2009.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053718845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000219668.47116.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000219668.47116.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000219668.47116.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000219668.47116.e6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181b23564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181b23564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181b23564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064354537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181e8e8b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1567205014666161213120807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069188525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-160302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071127292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13024-017-0162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851353", 
          "https://doi.org/10.1186/s13024-017-0162-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13024-017-0162-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851353", 
          "https://doi.org/10.1186/s13024-017-0162-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The relative performance of semi-quantitative amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) markers in diagnosing Alzheimer's disease (AD) and predicting the cognitive evolution of patients with mild cognitive impairment (MCI) is still debated.\nMETHODS: Subjects from the Alzheimer's Disease Neuroimaging Initiative 2 with complete baseline cognitive assessment (Mini Mental State Examination, Clinical Dementia Rating [CDR] and Alzheimer's Disease Assessment Scale-Cognitive Subscale [ADAS-cog] scores), CSF collection (amyloid-\u03b21-42 [A\u03b2], tau and phosphorylated tau) and 18F-florbetapir scans were included in our cross-sectional cohort. Among these, patients with MCI or substantial memory complaints constituted our longitudinal cohort and were followed for 30\u2009\u00b1\u200916\u00a0months. PET amyloid deposition was quantified using relative retention indices (standardised uptake value ratio [SUVr]) with respect to pontine, cerebellar and composite reference regions. Diagnostic and prognostic performance based on PET and CSF was evaluated using ROC analysis, multivariate linear regression and survival analysis with the Cox proportional hazards model.\nRESULTS: The cross-sectional study included 677 participants and revealed that pontine and composite SUVr values were better classifiers (AUC 0.88, diagnostic accuracy 85%) than CSF markers (AUC 0.83 and 0.85, accuracy 80% and 75%, for A\u03b2 and tau, respectively). SUVr was a strong independent determinant of cognition in multivariate regression, whereas A\u03b2 was not; tau was also a determinant, but to a lesser degree. Among the 396 patients from the longitudinal study, 82 (21%) converted to AD within 22\u2009\u00b1\u200913\u00a0months. Optimal SUVr thresholds to differentiate AD converters were quite similar to those of the cross-sectional study. Composite SUVr was the best AD classifier (AUC 0.86, sensitivity 88%, specificity 81%). In multivariate regression, baseline cognition (CDR and ADAS-cog) was the main predictor of subsequent cognitive decline. Pontine and composite SUVr were moderate but independent predictors of final status and CDR/ADAS-cog progression rate, whereas baseline CSF markers had a marginal influence. The adjusted HRs for AD conversion were 3.8 (p\u2009=\u20090.01) for PET profile, 1.2 (p\u2009=\u2009ns) for A\u03b2 profile and 1.8 (p\u2009=\u20090.03) for tau profile.\nCONCLUSIONS: Semi-quantitative amyloid PET appears more powerful than CSF markers for AD grading and MCI prognosis in terms of cognitive decline and AD conversion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13195-017-0260-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041797", 
        "issn": [
          "1758-9193"
        ], 
        "name": "Alzheimer's Research & Therapy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer\u2019s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database", 
    "pagination": "32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7844e9e2af14b2068d55b4084847edaca761320b5e9a0c201e9656933cd6ed6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28441967"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101511643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13195-017-0260-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084955268"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13195-017-0260-z", 
      "https://app.dimensions.ai/details/publication/pub.1084955268"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13195-017-0260-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13195-017-0260-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13195-017-0260-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13195-017-0260-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13195-017-0260-z'


 

This table displays all metadata directly associated to this object as RDF triples.

355 TRIPLES      21 PREDICATES      105 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13195-017-0260-z schema:about N050398cf4c5447b898d33f97b7af3627
2 N17f4ccc72f4c4d749d889f8f59c63285
3 N1f71e833af1d4cba9829d5649b37887f
4 N392008ec989c46b9b42876dd287aa524
5 N3b201e1fdb6a48228374e4ab85f97346
6 N3bf7bb9a301b4c62a2c78c41b5ab03bb
7 N501bdc5c8a0b4e529a6a0bacc7015dab
8 N629d31486ee14fdeb3bf410ea1c71ef6
9 N6336cb9d70514b10bcf0ff869a15fb46
10 N6b1bd21c19fc47ab8787a67ea9bed1fd
11 N6d2ae0af82d3455d923de6cf9afcf736
12 N80b241e7f9c3408fbea68b50deb6990d
13 N82db3cbec6c54c7e8e31569096948154
14 N8f17cad4badb42978a72881be52ebc85
15 Na50409e0308647ae9950e3da956c0e2f
16 Naaeb5927d43c419db781eecafe649c6d
17 Nbee4394598474e0badc0faa0dbc7956e
18 Ncb1f7ba627fe4dfb93f806a24875ddd5
19 Nda4b5b6e82d349e9a2b3ee0f5c7fd544
20 Neff6557c2f8d4d218f35d1193375f07c
21 Nfa2ba36a46874ae785fb15ce95f8b5c0
22 Nfa351c837f084feab5e3985627bd506d
23 Nff238c88c8494e66bf5f168d46e03370
24 anzsrc-for:11
25 anzsrc-for:1109
26 schema:author N8988bf0219054b8885b1d2d1be545eb9
27 schema:citation sg:pub.10.1007/s00259-012-2237-2
28 sg:pub.10.1007/s11682-012-9177-0
29 sg:pub.10.1038/mp.2014.9
30 sg:pub.10.1186/alzrt62
31 sg:pub.10.1186/alzrt70
32 sg:pub.10.1186/s13024-017-0162-3
33 sg:pub.10.1186/s13195-016-0172-3
34 sg:pub.10.1186/s13195-016-0220-z
35 https://doi.org/10.1001/archneur.65.11.1509
36 https://doi.org/10.1001/archneurol.2009.269
37 https://doi.org/10.1001/archneurol.2009.272
38 https://doi.org/10.1001/archneurol.2010.179
39 https://doi.org/10.1001/archneurol.2011.150
40 https://doi.org/10.1001/jama.289.16.2094
41 https://doi.org/10.1001/jamaneurol.2014.1358
42 https://doi.org/10.1001/jamaneurol.2014.4829
43 https://doi.org/10.1001/jamaneurol.2015.1633
44 https://doi.org/10.1001/jamaneurol.2016.3751
45 https://doi.org/10.1002/acn3.81
46 https://doi.org/10.1002/ana.21610
47 https://doi.org/10.1002/ana.23650
48 https://doi.org/10.1002/ana.23908
49 https://doi.org/10.1002/ana.23931
50 https://doi.org/10.1016/j.jalz.2010.08.230
51 https://doi.org/10.1016/j.jalz.2013.11.009
52 https://doi.org/10.1016/j.jalz.2015.03.002
53 https://doi.org/10.1016/j.neuroimage.2009.01.057
54 https://doi.org/10.1016/j.neuroimage.2014.11.055
55 https://doi.org/10.1016/s1474-4422(06)70355-6
56 https://doi.org/10.1016/s1474-4422(07)70178-3
57 https://doi.org/10.1016/s1474-4422(09)70139-5
58 https://doi.org/10.1016/s1474-4422(09)70299-6
59 https://doi.org/10.1016/s1474-4422(12)70142-4
60 https://doi.org/10.1016/s1474-4422(13)70044-9
61 https://doi.org/10.1016/s1474-4422(14)70090-0
62 https://doi.org/10.1093/brain/awq277
63 https://doi.org/10.1093/brain/awu367
64 https://doi.org/10.1093/brain/aww015
65 https://doi.org/10.1093/cercor/bhr271
66 https://doi.org/10.1136/jnnp-2014-308094
67 https://doi.org/10.1212/01.wnl.0000219668.47116.e6
68 https://doi.org/10.1212/wnl.0b013e3181b23564
69 https://doi.org/10.1212/wnl.0b013e3181cb3e25
70 https://doi.org/10.1212/wnl.0b013e3181e8e8b8
71 https://doi.org/10.1212/wnl.34.7.939
72 https://doi.org/10.1373/clinchem.2004.039347
73 https://doi.org/10.2174/1567205014666161213120807
74 https://doi.org/10.2967/jnumed.111.090340
75 https://doi.org/10.2967/jnumed.112.109009
76 https://doi.org/10.2967/jnumed.114.148981
77 https://doi.org/10.2967/jnumed.114.149732
78 https://doi.org/10.3174/ajnr.a1809
79 https://doi.org/10.3233/jad-160302
80 schema:datePublished 2017-12
81 schema:datePublishedReg 2017-12-01
82 schema:description BACKGROUND: The relative performance of semi-quantitative amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) markers in diagnosing Alzheimer's disease (AD) and predicting the cognitive evolution of patients with mild cognitive impairment (MCI) is still debated. METHODS: Subjects from the Alzheimer's Disease Neuroimaging Initiative 2 with complete baseline cognitive assessment (Mini Mental State Examination, Clinical Dementia Rating [CDR] and Alzheimer's Disease Assessment Scale-Cognitive Subscale [ADAS-cog] scores), CSF collection (amyloid-β1-42 [Aβ], tau and phosphorylated tau) and 18F-florbetapir scans were included in our cross-sectional cohort. Among these, patients with MCI or substantial memory complaints constituted our longitudinal cohort and were followed for 30 ± 16 months. PET amyloid deposition was quantified using relative retention indices (standardised uptake value ratio [SUVr]) with respect to pontine, cerebellar and composite reference regions. Diagnostic and prognostic performance based on PET and CSF was evaluated using ROC analysis, multivariate linear regression and survival analysis with the Cox proportional hazards model. RESULTS: The cross-sectional study included 677 participants and revealed that pontine and composite SUVr values were better classifiers (AUC 0.88, diagnostic accuracy 85%) than CSF markers (AUC 0.83 and 0.85, accuracy 80% and 75%, for Aβ and tau, respectively). SUVr was a strong independent determinant of cognition in multivariate regression, whereas Aβ was not; tau was also a determinant, but to a lesser degree. Among the 396 patients from the longitudinal study, 82 (21%) converted to AD within 22 ± 13 months. Optimal SUVr thresholds to differentiate AD converters were quite similar to those of the cross-sectional study. Composite SUVr was the best AD classifier (AUC 0.86, sensitivity 88%, specificity 81%). In multivariate regression, baseline cognition (CDR and ADAS-cog) was the main predictor of subsequent cognitive decline. Pontine and composite SUVr were moderate but independent predictors of final status and CDR/ADAS-cog progression rate, whereas baseline CSF markers had a marginal influence. The adjusted HRs for AD conversion were 3.8 (p = 0.01) for PET profile, 1.2 (p = ns) for Aβ profile and 1.8 (p = 0.03) for tau profile. CONCLUSIONS: Semi-quantitative amyloid PET appears more powerful than CSF markers for AD grading and MCI prognosis in terms of cognitive decline and AD conversion.
83 schema:genre research_article
84 schema:inLanguage en
85 schema:isAccessibleForFree true
86 schema:isPartOf Na47d0a5ece3d4971a3e95c4dda0df8a3
87 Ne037d2251bdf4d0ab208f7ac40ff28d3
88 sg:journal.1041797
89 schema:name Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database
90 schema:pagination 32
91 schema:productId N1429cb1f278a4d94bb4f2ea16edaafa2
92 N2302366d5bdb4254b1010524aa832f2b
93 N8fac3b000a7144268f577da2e1a9826b
94 Nf39cc4fb74324caf8e7abbeb807a3e67
95 Nf4ea441373e644e5bd2ca834ac156def
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955268
97 https://doi.org/10.1186/s13195-017-0260-z
98 schema:sdDatePublished 2019-04-11T10:30
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Ndecd9e50c15342e486bc633afa55a240
101 schema:url https://link.springer.com/10.1186%2Fs13195-017-0260-z
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N050398cf4c5447b898d33f97b7af3627 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Diagnosis, Differential
107 rdf:type schema:DefinedTerm
108 N05135cb0447c47f8a415f91ad4f94a9d rdf:first sg:person.01370737637.53
109 rdf:rest N832e24c98494413598b5e0ee443444d4
110 N0c5ba62e953d4fafb2dd139a0f16183b rdf:first Nddb3d927df244ed189fd30b2397c112c
111 rdf:rest rdf:nil
112 N1429cb1f278a4d94bb4f2ea16edaafa2 schema:name dimensions_id
113 schema:value pub.1084955268
114 rdf:type schema:PropertyValue
115 N17f4ccc72f4c4d749d889f8f59c63285 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Prevalence
117 rdf:type schema:DefinedTerm
118 N1f71e833af1d4cba9829d5649b37887f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Amyloid beta-Peptides
120 rdf:type schema:DefinedTerm
121 N2302366d5bdb4254b1010524aa832f2b schema:name pubmed_id
122 schema:value 28441967
123 rdf:type schema:PropertyValue
124 N392008ec989c46b9b42876dd287aa524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N3b201e1fdb6a48228374e4ab85f97346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Cognition Disorders
129 rdf:type schema:DefinedTerm
130 N3bf7bb9a301b4c62a2c78c41b5ab03bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Databases, Factual
132 rdf:type schema:DefinedTerm
133 N501bdc5c8a0b4e529a6a0bacc7015dab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Biomarkers
135 rdf:type schema:DefinedTerm
136 N629d31486ee14fdeb3bf410ea1c71ef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Reproducibility of Results
138 rdf:type schema:DefinedTerm
139 N6336cb9d70514b10bcf0ff869a15fb46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Female
141 rdf:type schema:DefinedTerm
142 N6b1bd21c19fc47ab8787a67ea9bed1fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Radiopharmaceuticals
144 rdf:type schema:DefinedTerm
145 N6d2ae0af82d3455d923de6cf9afcf736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Aged
147 rdf:type schema:DefinedTerm
148 N80b241e7f9c3408fbea68b50deb6990d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Alzheimer Disease
150 rdf:type schema:DefinedTerm
151 N82db3cbec6c54c7e8e31569096948154 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Aged, 80 and over
153 rdf:type schema:DefinedTerm
154 N832e24c98494413598b5e0ee443444d4 rdf:first sg:person.01232301242.56
155 rdf:rest N0c5ba62e953d4fafb2dd139a0f16183b
156 N8988bf0219054b8885b1d2d1be545eb9 rdf:first sg:person.01102111342.08
157 rdf:rest N05135cb0447c47f8a415f91ad4f94a9d
158 N8f17cad4badb42978a72881be52ebc85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Positron-Emission Tomography
160 rdf:type schema:DefinedTerm
161 N8fac3b000a7144268f577da2e1a9826b schema:name readcube_id
162 schema:value c7844e9e2af14b2068d55b4084847edaca761320b5e9a0c201e9656933cd6ed6
163 rdf:type schema:PropertyValue
164 Na47d0a5ece3d4971a3e95c4dda0df8a3 schema:volumeNumber 9
165 rdf:type schema:PublicationVolume
166 Na50409e0308647ae9950e3da956c0e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Risk Assessment
168 rdf:type schema:DefinedTerm
169 Naaeb5927d43c419db781eecafe649c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Peptide Fragments
171 rdf:type schema:DefinedTerm
172 Nbee4394598474e0badc0faa0dbc7956e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name tau Proteins
174 rdf:type schema:DefinedTerm
175 Ncb1f7ba627fe4dfb93f806a24875ddd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Prognosis
177 rdf:type schema:DefinedTerm
178 Nda4b5b6e82d349e9a2b3ee0f5c7fd544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Middle Aged
180 rdf:type schema:DefinedTerm
181 Nddb3d927df244ed189fd30b2397c112c schema:familyName the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
182 rdf:type schema:Person
183 Ndecd9e50c15342e486bc633afa55a240 schema:name Springer Nature - SN SciGraph project
184 rdf:type schema:Organization
185 Ne037d2251bdf4d0ab208f7ac40ff28d3 schema:issueNumber 1
186 rdf:type schema:PublicationIssue
187 Neff6557c2f8d4d218f35d1193375f07c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Sensitivity and Specificity
189 rdf:type schema:DefinedTerm
190 Nf39cc4fb74324caf8e7abbeb807a3e67 schema:name nlm_unique_id
191 schema:value 101511643
192 rdf:type schema:PropertyValue
193 Nf4ea441373e644e5bd2ca834ac156def schema:name doi
194 schema:value 10.1186/s13195-017-0260-z
195 rdf:type schema:PropertyValue
196 Nfa2ba36a46874ae785fb15ce95f8b5c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Male
198 rdf:type schema:DefinedTerm
199 Nfa351c837f084feab5e3985627bd506d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name France
201 rdf:type schema:DefinedTerm
202 Nff238c88c8494e66bf5f168d46e03370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Comorbidity
204 rdf:type schema:DefinedTerm
205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
206 schema:name Medical and Health Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
209 schema:name Neurosciences
210 rdf:type schema:DefinedTerm
211 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1186/s13195-017-0260-z
212 rdf:type schema:MonetaryGrant
213 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1186/s13195-017-0260-z
214 rdf:type schema:MonetaryGrant
215 sg:journal.1041797 schema:issn 1758-9193
216 schema:name Alzheimer's Research & Therapy
217 rdf:type schema:Periodical
218 sg:person.01102111342.08 schema:affiliation https://www.grid.ac/institutes/grid.411572.4
219 schema:familyName Ben Bouallègue
220 schema:givenName Fayçal
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102111342.08
222 rdf:type schema:Person
223 sg:person.01232301242.56 schema:affiliation https://www.grid.ac/institutes/grid.414282.9
224 schema:familyName Payoux
225 schema:givenName Pierre
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232301242.56
227 rdf:type schema:Person
228 sg:person.01370737637.53 schema:affiliation https://www.grid.ac/institutes/grid.411572.4
229 schema:familyName Mariano-Goulart
230 schema:givenName Denis
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370737637.53
232 rdf:type schema:Person
233 sg:pub.10.1007/s00259-012-2237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016145551
234 https://doi.org/10.1007/s00259-012-2237-2
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s11682-012-9177-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027889779
237 https://doi.org/10.1007/s11682-012-9177-0
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/mp.2014.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044329471
240 https://doi.org/10.1038/mp.2014.9
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/alzrt62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023764378
243 https://doi.org/10.1186/alzrt62
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/alzrt70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035003903
246 https://doi.org/10.1186/alzrt70
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/s13024-017-0162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083851353
249 https://doi.org/10.1186/s13024-017-0162-3
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/s13195-016-0172-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025577843
252 https://doi.org/10.1186/s13195-016-0172-3
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/s13195-016-0220-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028695474
255 https://doi.org/10.1186/s13195-016-0220-z
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1001/archneur.65.11.1509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040961566
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1001/archneurol.2009.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053718845
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1001/archneurol.2009.272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046274326
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1001/archneurol.2010.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527065
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1001/archneurol.2011.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023756040
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1001/jama.289.16.2094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032781451
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1001/jamaneurol.2014.1358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034837150
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1001/jamaneurol.2014.4829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035611656
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1001/jamaneurol.2015.1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014269453
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1001/jamaneurol.2016.3751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013699006
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1002/acn3.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358414
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1002/ana.21610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006522492
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1002/ana.23650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048205653
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1002/ana.23908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023439990
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1002/ana.23931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038667999
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1016/j.jalz.2010.08.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012384053
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1016/j.jalz.2013.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027919849
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1016/j.jalz.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049875661
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.neuroimage.2009.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044788433
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/j.neuroimage.2014.11.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019815882
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s1474-4422(06)70355-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039309033
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s1474-4422(07)70178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032800719
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/s1474-4422(09)70139-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005551999
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1016/s1474-4422(09)70299-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108805
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1016/s1474-4422(12)70142-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875103
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/s1474-4422(13)70044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005017445
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/s1474-4422(14)70090-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004039747
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1093/brain/awq277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010781685
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1093/brain/awu367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030984508
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1093/brain/aww015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045665691
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1093/cercor/bhr271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051944939
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1136/jnnp-2014-308094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027209137
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1212/01.wnl.0000219668.47116.e6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064348175
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1212/wnl.0b013e3181b23564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064354537
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1212/wnl.0b013e3181cb3e25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038946230
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1212/wnl.0b013e3181e8e8b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355416
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1212/wnl.34.7.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024664401
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1373/clinchem.2004.039347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023762610
332 rdf:type schema:CreativeWork
333 https://doi.org/10.2174/1567205014666161213120807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069188525
334 rdf:type schema:CreativeWork
335 https://doi.org/10.2967/jnumed.111.090340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002048165
336 rdf:type schema:CreativeWork
337 https://doi.org/10.2967/jnumed.112.109009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048558096
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2967/jnumed.114.148981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008088660
340 rdf:type schema:CreativeWork
341 https://doi.org/10.2967/jnumed.114.149732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025911211
342 rdf:type schema:CreativeWork
343 https://doi.org/10.3174/ajnr.a1809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014625244
344 rdf:type schema:CreativeWork
345 https://doi.org/10.3233/jad-160302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071127292
346 rdf:type schema:CreativeWork
347 https://www.grid.ac/institutes/grid.411572.4 schema:alternateName Hôpital Lapeyronie
348 schema:name Nuclear Medicine Department, Lapeyronie University Hospital, Montpellier, France
349 Nuclear Medicine Department, Purpan University Hospital, Toulouse, France
350 Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Inserm/UPS, Toulouse, France
351 rdf:type schema:Organization
352 https://www.grid.ac/institutes/grid.414282.9 schema:alternateName Hôpital Purpan
353 schema:name Nuclear Medicine Department, Purpan University Hospital, Toulouse, France
354 Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Inserm/UPS, Toulouse, France
355 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...