Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mi Kyeong Lee, Cheng-Jian Xu, Megan U. Carnes, Cody E. Nichols, James M. Ward, The BIOS consortium, Sung Ok Kwon, Sun-Young Kim, Woo Jin Kim, Stephanie J. London

ABSTRACT

BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). RESULTS: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses. CONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z

DOI

http://dx.doi.org/10.1186/s13148-019-0635-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112460474

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30819252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Mi Kyeong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4494.d", 
          "name": [
            "Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children\u2019s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands", 
            "Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands", 
            "GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Cheng-Jian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "OmicSoft, QIAGEN Bioinformatics, 27513, Cary, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carnes", 
        "givenName": "Megan U.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nichols", 
        "givenName": "Cody E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "James M.", 
        "type": "Person"
      }, 
      {
        "familyName": "The BIOS consortium", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Sung Ok", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.410914.9", 
          "name": [
            "Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, 10408, Goyang, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sun-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Woo Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "London", 
        "givenName": "Stephanie J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyr154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008991931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-8-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009478642", 
          "https://doi.org/10.1186/1756-8935-8-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-8-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009478642", 
          "https://doi.org/10.1186/1756-8935-8-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwu186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017352955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020548485", 
          "https://doi.org/10.1186/s12940-016-0202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020548485", 
          "https://doi.org/10.1186/s12940-016-0202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-6-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021964250", 
          "https://doi.org/10.1186/1756-8935-6-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023009366", 
          "https://doi.org/10.1038/ng.500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023009366", 
          "https://doi.org/10.1038/ng.500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023317678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025078414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.116.001506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027386887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.116.001506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027386887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-9-r105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031523910", 
          "https://doi.org/10.1186/gb-2013-14-9-r105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1509966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032571357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034923242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036393630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2016.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036514812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036696259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1206010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038621873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042068352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042068352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0568-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042836374", 
          "https://doi.org/10.1186/s12859-015-0568-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0568-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042836374", 
          "https://doi.org/10.1186/s12859-015-0568-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0041361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047981654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050402786", 
          "https://doi.org/10.1038/nature09270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050402786", 
          "https://doi.org/10.1038/nature09270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2161-105x.1000169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072334440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242434", 
          "https://doi.org/10.1186/s13059-016-1131-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242434", 
          "https://doi.org/10.1186/s13059-016-1131-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084525910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/critrevbiomedeng.2017019768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090968486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091326848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091326848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100866658"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N\u2009=\u2009100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter \u2264\u200910\u00a0\u03bcm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs).\nRESULTS: After multiple testing correction (false discovery rate <\u20090.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses.\nCONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13148-019-0635-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2660462", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7470799", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7479733", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042271", 
        "issn": [
          "1868-7075", 
          "1868-7083"
        ], 
        "name": "Clinical Epigenetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6649efbb60a76fb8cda923155125d6e93f0a6099ca587c99e81d170a05984bf6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30819252"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101516977"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13148-019-0635-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112460474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13148-019-0635-z", 
      "https://app.dimensions.ai/details/publication/pub.1112460474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13148-019-0635-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13148-019-0635-z schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N8fa1951456534d1f8eba89922d5de774
4 schema:citation sg:pub.10.1038/nature09270
5 sg:pub.10.1038/ng.500
6 sg:pub.10.1186/1471-2105-13-86
7 sg:pub.10.1186/1756-8935-6-4
8 sg:pub.10.1186/1756-8935-8-6
9 sg:pub.10.1186/gb-2013-14-9-r105
10 sg:pub.10.1186/s12859-015-0568-2
11 sg:pub.10.1186/s12940-016-0202-4
12 sg:pub.10.1186/s13059-016-1131-9
13 https://doi.org/10.1016/j.atherosclerosis.2010.12.005
14 https://doi.org/10.1016/j.celrep.2016.10.059
15 https://doi.org/10.1016/j.envint.2017.08.006
16 https://doi.org/10.1016/j.envpol.2017.03.056
17 https://doi.org/10.1093/aje/kwu186
18 https://doi.org/10.1093/bioinformatics/btq340
19 https://doi.org/10.1093/bioinformatics/bts034
20 https://doi.org/10.1093/bioinformatics/bts545
21 https://doi.org/10.1093/bioinformatics/bts680
22 https://doi.org/10.1093/bioinformatics/btt684
23 https://doi.org/10.1093/bioinformatics/btu049
24 https://doi.org/10.1093/biostatistics/kxj037
25 https://doi.org/10.1093/ije/dyr154
26 https://doi.org/10.1161/circgenetics.116.001506
27 https://doi.org/10.1183/09031936.00130014
28 https://doi.org/10.1289/ehp.1206010
29 https://doi.org/10.1289/ehp.1509966
30 https://doi.org/10.1289/ehp2045
31 https://doi.org/10.1289/ehp36
32 https://doi.org/10.1371/journal.pone.0041361
33 https://doi.org/10.1615/critrevbiomedeng.2017019768
34 https://doi.org/10.4172/2161-105x.1000169
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). RESULTS: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses. CONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N892da62f6ca14726a94d38f8d1a44b76
42 Nf9ea8290315640758fa926b50c7c457e
43 sg:journal.1042271
44 schema:name Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults
45 schema:pagination 37
46 schema:productId N0bce37b2d267434a882d415b8a790b32
47 N237c4162791341bc876c0b3a1ca68ee3
48 N27a88bab95a745358c6f498dd06336c0
49 N2d340c3284a84eb88f4e2c43f5364094
50 N552490c5a80f425088b9ce962cbb1eda
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112460474
52 https://doi.org/10.1186/s13148-019-0635-z
53 schema:sdDatePublished 2019-04-11T13:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2430c44f9ade493b83c8510a842a28bb
56 schema:url https://link.springer.com/10.1186%2Fs13148-019-0635-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0bce37b2d267434a882d415b8a790b32 schema:name nlm_unique_id
61 schema:value 101516977
62 rdf:type schema:PropertyValue
63 N0ef88658381343389e7fb59d311603cd schema:affiliation N550d68c6a47b4d079ff62915f30a0a6f
64 schema:familyName Carnes
65 schema:givenName Megan U.
66 rdf:type schema:Person
67 N132f33535af341fe956a5c0bb8af3d29 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
68 schema:familyName London
69 schema:givenName Stephanie J.
70 rdf:type schema:Person
71 N13fe738d6b9a4ec1b74ad8a398fa34fe rdf:first Nea289fda558b430e86f33ed60197d3eb
72 rdf:rest N80bd612ab2084ec7be6e52a0be3eb212
73 N22b98a03bff843cab3286be16c38cb41 schema:affiliation https://www.grid.ac/institutes/grid.410914.9
74 schema:familyName Kim
75 schema:givenName Sun-Young
76 rdf:type schema:Person
77 N237c4162791341bc876c0b3a1ca68ee3 schema:name pubmed_id
78 schema:value 30819252
79 rdf:type schema:PropertyValue
80 N23eb01b07ef242e09f3027248f7c2812 schema:affiliation https://www.grid.ac/institutes/grid.4494.d
81 schema:familyName Xu
82 schema:givenName Cheng-Jian
83 rdf:type schema:Person
84 N2430c44f9ade493b83c8510a842a28bb schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N27a88bab95a745358c6f498dd06336c0 schema:name readcube_id
87 schema:value 6649efbb60a76fb8cda923155125d6e93f0a6099ca587c99e81d170a05984bf6
88 rdf:type schema:PropertyValue
89 N2d340c3284a84eb88f4e2c43f5364094 schema:name dimensions_id
90 schema:value pub.1112460474
91 rdf:type schema:PropertyValue
92 N550d68c6a47b4d079ff62915f30a0a6f schema:name OmicSoft, QIAGEN Bioinformatics, 27513, Cary, NC, USA
93 rdf:type schema:Organization
94 N552490c5a80f425088b9ce962cbb1eda schema:name doi
95 schema:value 10.1186/s13148-019-0635-z
96 rdf:type schema:PropertyValue
97 N553dc48ef41a46169bc9dfe5e342030b schema:affiliation https://www.grid.ac/institutes/grid.280664.e
98 schema:familyName Lee
99 schema:givenName Mi Kyeong
100 rdf:type schema:Person
101 N580ff102b6764a2394a3a4932376e1fb rdf:first Ncebc66ebd1944ff6a8200ae035aedf99
102 rdf:rest Nf9545b8025174ee9b538f78beb1ffb8a
103 N61edd1be098649969558c7358a4708b2 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
104 schema:familyName Kim
105 schema:givenName Woo Jin
106 rdf:type schema:Person
107 N64eb92dc318d476f8d082f6ae0a89910 rdf:first N61edd1be098649969558c7358a4708b2
108 rdf:rest N892ccdbed0e64823a490f5b0a86e5783
109 N80bd612ab2084ec7be6e52a0be3eb212 rdf:first Ndbd6f19a656f4e7286ab68a2589e638c
110 rdf:rest Ne4fc9bff5eb74ff28b462bcc8679de64
111 N892ccdbed0e64823a490f5b0a86e5783 rdf:first N132f33535af341fe956a5c0bb8af3d29
112 rdf:rest rdf:nil
113 N892da62f6ca14726a94d38f8d1a44b76 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 N8fa1951456534d1f8eba89922d5de774 rdf:first N553dc48ef41a46169bc9dfe5e342030b
116 rdf:rest Ne7056403a9ef46c99f274bddc85286c0
117 Na4fad3de01ed4d5dbc70a789c8c0edba rdf:first N0ef88658381343389e7fb59d311603cd
118 rdf:rest N580ff102b6764a2394a3a4932376e1fb
119 Nb27e523694d84a3bbac1716ba2b3e66c schema:affiliation https://www.grid.ac/institutes/grid.280664.e
120 schema:familyName Ward
121 schema:givenName James M.
122 rdf:type schema:Person
123 Ncebc66ebd1944ff6a8200ae035aedf99 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
124 schema:familyName Nichols
125 schema:givenName Cody E.
126 rdf:type schema:Person
127 Ndbd6f19a656f4e7286ab68a2589e638c schema:affiliation https://www.grid.ac/institutes/grid.412010.6
128 schema:familyName Kwon
129 schema:givenName Sung Ok
130 rdf:type schema:Person
131 Ne4fc9bff5eb74ff28b462bcc8679de64 rdf:first N22b98a03bff843cab3286be16c38cb41
132 rdf:rest N64eb92dc318d476f8d082f6ae0a89910
133 Ne7056403a9ef46c99f274bddc85286c0 rdf:first N23eb01b07ef242e09f3027248f7c2812
134 rdf:rest Na4fad3de01ed4d5dbc70a789c8c0edba
135 Nea289fda558b430e86f33ed60197d3eb schema:familyName The BIOS consortium
136 rdf:type schema:Person
137 Nf9545b8025174ee9b538f78beb1ffb8a rdf:first Nb27e523694d84a3bbac1716ba2b3e66c
138 rdf:rest N13fe738d6b9a4ec1b74ad8a398fa34fe
139 Nf9ea8290315640758fa926b50c7c457e schema:volumeNumber 11
140 rdf:type schema:PublicationVolume
141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
142 schema:name Medical and Health Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
145 schema:name Public Health and Health Services
146 rdf:type schema:DefinedTerm
147 sg:grant.2660462 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
148 rdf:type schema:MonetaryGrant
149 sg:grant.7470799 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
150 rdf:type schema:MonetaryGrant
151 sg:grant.7479733 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
152 rdf:type schema:MonetaryGrant
153 sg:journal.1042271 schema:issn 1868-7075
154 1868-7083
155 schema:name Clinical Epigenetics
156 rdf:type schema:Periodical
157 sg:pub.10.1038/nature09270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050402786
158 https://doi.org/10.1038/nature09270
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023009366
161 https://doi.org/10.1038/ng.500
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
164 https://doi.org/10.1186/1471-2105-13-86
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1756-8935-6-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021964250
167 https://doi.org/10.1186/1756-8935-6-4
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1756-8935-8-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009478642
170 https://doi.org/10.1186/1756-8935-8-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/gb-2013-14-9-r105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031523910
173 https://doi.org/10.1186/gb-2013-14-9-r105
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/s12859-015-0568-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042836374
176 https://doi.org/10.1186/s12859-015-0568-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/s12940-016-0202-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020548485
179 https://doi.org/10.1186/s12940-016-0202-4
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s13059-016-1131-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074242434
182 https://doi.org/10.1186/s13059-016-1131-9
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.atherosclerosis.2010.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036393630
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.celrep.2016.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036514812
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.envint.2017.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091326848
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.envpol.2017.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084525910
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/aje/kwu186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017352955
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btq340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276303
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/bts034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025078414
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/bts545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023317678
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bts680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923242
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btt684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042068352
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btu049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036696259
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/ije/dyr154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008991931
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1161/circgenetics.116.001506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027386887
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1183/09031936.00130014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008873933
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1289/ehp.1206010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038621873
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1289/ehp.1509966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032571357
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1289/ehp2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100866658
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1289/ehp36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736896
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pone.0041361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047981654
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1615/critrevbiomedeng.2017019768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090968486
225 rdf:type schema:CreativeWork
226 https://doi.org/10.4172/2161-105x.1000169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072334440
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.280664.e schema:alternateName National Institute of Environmental Health Sciences
229 schema:name Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.410914.9 schema:alternateName National Cancer Center
232 schema:name Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, 10408, Goyang, South Korea
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.412010.6 schema:alternateName Kangwon National University
235 schema:name Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4494.d schema:alternateName University Medical Center Groningen
238 schema:name Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
239 Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
240 GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...