Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mi Kyeong Lee, Cheng-Jian Xu, Megan U. Carnes, Cody E. Nichols, James M. Ward, The BIOS consortium, Sung Ok Kwon, Sun-Young Kim, Woo Jin Kim, Stephanie J. London

ABSTRACT

BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). RESULTS: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses. CONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z

DOI

http://dx.doi.org/10.1186/s13148-019-0635-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112460474

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30819252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Mi Kyeong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4494.d", 
          "name": [
            "Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children\u2019s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands", 
            "Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands", 
            "GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Cheng-Jian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "OmicSoft, QIAGEN Bioinformatics, 27513, Cary, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carnes", 
        "givenName": "Megan U.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nichols", 
        "givenName": "Cody E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "James M.", 
        "type": "Person"
      }, 
      {
        "familyName": "The BIOS consortium", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Sung Ok", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.410914.9", 
          "name": [
            "Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, 10408, Goyang, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sun-Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Woo Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Environmental Health Sciences", 
          "id": "https://www.grid.ac/institutes/grid.280664.e", 
          "name": [
            "Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "London", 
        "givenName": "Stephanie J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/09031936.00130014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyr154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008991931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-8-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009478642", 
          "https://doi.org/10.1186/1756-8935-8-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-8-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009478642", 
          "https://doi.org/10.1186/1756-8935-8-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwu186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017352955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020548485", 
          "https://doi.org/10.1186/s12940-016-0202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-016-0202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020548485", 
          "https://doi.org/10.1186/s12940-016-0202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-8935-6-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021964250", 
          "https://doi.org/10.1186/1756-8935-6-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023009366", 
          "https://doi.org/10.1038/ng.500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023009366", 
          "https://doi.org/10.1038/ng.500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023317678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025078414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.116.001506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027386887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.116.001506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027386887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-9-r105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031523910", 
          "https://doi.org/10.1186/gb-2013-14-9-r105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1509966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032571357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034923242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036393630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2016.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036514812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036696259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1206010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038621873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042068352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042068352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0568-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042836374", 
          "https://doi.org/10.1186/s12859-015-0568-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0568-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042836374", 
          "https://doi.org/10.1186/s12859-015-0568-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047392734", 
          "https://doi.org/10.1186/1471-2105-13-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0041361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047981654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050402786", 
          "https://doi.org/10.1038/nature09270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050402786", 
          "https://doi.org/10.1038/nature09270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064736896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2161-105x.1000169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072334440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242434", 
          "https://doi.org/10.1186/s13059-016-1131-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242434", 
          "https://doi.org/10.1186/s13059-016-1131-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084525910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/critrevbiomedeng.2017019768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090968486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091326848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091326848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100866658"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N\u2009=\u2009100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter \u2264\u200910\u00a0\u03bcm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs).\nRESULTS: After multiple testing correction (false discovery rate <\u20090.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses.\nCONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13148-019-0635-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2660462", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7470799", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7479733", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042271", 
        "issn": [
          "1868-7075", 
          "1868-7083"
        ], 
        "name": "Clinical Epigenetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6649efbb60a76fb8cda923155125d6e93f0a6099ca587c99e81d170a05984bf6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30819252"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101516977"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13148-019-0635-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112460474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13148-019-0635-z", 
      "https://app.dimensions.ai/details/publication/pub.1112460474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13148-019-0635-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13148-019-0635-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13148-019-0635-z schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nb66c27d4ad7c4b5a97965d88ab94c2a7
4 schema:citation sg:pub.10.1038/nature09270
5 sg:pub.10.1038/ng.500
6 sg:pub.10.1186/1471-2105-13-86
7 sg:pub.10.1186/1756-8935-6-4
8 sg:pub.10.1186/1756-8935-8-6
9 sg:pub.10.1186/gb-2013-14-9-r105
10 sg:pub.10.1186/s12859-015-0568-2
11 sg:pub.10.1186/s12940-016-0202-4
12 sg:pub.10.1186/s13059-016-1131-9
13 https://doi.org/10.1016/j.atherosclerosis.2010.12.005
14 https://doi.org/10.1016/j.celrep.2016.10.059
15 https://doi.org/10.1016/j.envint.2017.08.006
16 https://doi.org/10.1016/j.envpol.2017.03.056
17 https://doi.org/10.1093/aje/kwu186
18 https://doi.org/10.1093/bioinformatics/btq340
19 https://doi.org/10.1093/bioinformatics/bts034
20 https://doi.org/10.1093/bioinformatics/bts545
21 https://doi.org/10.1093/bioinformatics/bts680
22 https://doi.org/10.1093/bioinformatics/btt684
23 https://doi.org/10.1093/bioinformatics/btu049
24 https://doi.org/10.1093/biostatistics/kxj037
25 https://doi.org/10.1093/ije/dyr154
26 https://doi.org/10.1161/circgenetics.116.001506
27 https://doi.org/10.1183/09031936.00130014
28 https://doi.org/10.1289/ehp.1206010
29 https://doi.org/10.1289/ehp.1509966
30 https://doi.org/10.1289/ehp2045
31 https://doi.org/10.1289/ehp36
32 https://doi.org/10.1371/journal.pone.0041361
33 https://doi.org/10.1615/critrevbiomedeng.2017019768
34 https://doi.org/10.4172/2161-105x.1000169
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description BACKGROUND: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina's Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μm in diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants' residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). RESULTS: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular and respiratory diseases as well as inflammatory and immune responses. CONCLUSIONS: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation. The differential methylation signals can serve as potential air pollution biomarkers. These results may help better understand the influences of ambient air pollution on human health.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N07c33dd2ebba4da4a32b903bafca7486
42 N1e9870b80a0a4ee0acc0f62c79d390ba
43 sg:journal.1042271
44 schema:name Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults
45 schema:pagination 37
46 schema:productId Na8fca80d2fb0454389476baeed68c91e
47 Nae28aac491694eedba9c7435a58e12de
48 Nbeaae44ef41941d8be0f452dca173659
49 Nbf28012a9eb346ccaca9f76971e1f217
50 Nedb0372197e541b993a92c8038708d8d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112460474
52 https://doi.org/10.1186/s13148-019-0635-z
53 schema:sdDatePublished 2019-04-11T13:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N0364b6a50658451d9ccf1eb3b13f568d
56 schema:url https://link.springer.com/10.1186%2Fs13148-019-0635-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02416a219cb44bda9db7a83704ce2140 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
61 schema:familyName Ward
62 schema:givenName James M.
63 rdf:type schema:Person
64 N0364b6a50658451d9ccf1eb3b13f568d schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N063bdc8c0ecd47309d79592b410116a6 rdf:first N3e46af33050c4681b4bdd31d6c46dc48
67 rdf:rest rdf:nil
68 N07c33dd2ebba4da4a32b903bafca7486 schema:volumeNumber 11
69 rdf:type schema:PublicationVolume
70 N1e9870b80a0a4ee0acc0f62c79d390ba schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N229ce10981634a09bb7a561737c4a35a rdf:first N95b272fde5c04e4d8dc9b194bd01b606
73 rdf:rest N063bdc8c0ecd47309d79592b410116a6
74 N24863ff4e77a4ae2b154fb73fe44a987 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
75 schema:familyName Kwon
76 schema:givenName Sung Ok
77 rdf:type schema:Person
78 N35cfffdb36024a8eb0582313c8a26001 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
79 schema:familyName Nichols
80 schema:givenName Cody E.
81 rdf:type schema:Person
82 N3e46af33050c4681b4bdd31d6c46dc48 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
83 schema:familyName London
84 schema:givenName Stephanie J.
85 rdf:type schema:Person
86 N3f5b018cbe97446f9b3ff5dd7249c4f3 schema:affiliation https://www.grid.ac/institutes/grid.410914.9
87 schema:familyName Kim
88 schema:givenName Sun-Young
89 rdf:type schema:Person
90 N479cc4ff012d408599f5e2ab6ba82a59 rdf:first N3f5b018cbe97446f9b3ff5dd7249c4f3
91 rdf:rest N229ce10981634a09bb7a561737c4a35a
92 N5e64f42a6d304a88a5bba035a173e7ec rdf:first N7e1877d3f57147199e2ffa8ed96fec6c
93 rdf:rest N7097e34b44414613ab8ccec0b9ca4e0f
94 N5e6513f852e344bbad41c4c6285cf6c7 schema:affiliation https://www.grid.ac/institutes/grid.4494.d
95 schema:familyName Xu
96 schema:givenName Cheng-Jian
97 rdf:type schema:Person
98 N7097e34b44414613ab8ccec0b9ca4e0f rdf:first N24863ff4e77a4ae2b154fb73fe44a987
99 rdf:rest N479cc4ff012d408599f5e2ab6ba82a59
100 N7e1877d3f57147199e2ffa8ed96fec6c schema:familyName The BIOS consortium
101 rdf:type schema:Person
102 N82c3f38c97804ca096d087999a6fa7c9 schema:affiliation https://www.grid.ac/institutes/grid.280664.e
103 schema:familyName Lee
104 schema:givenName Mi Kyeong
105 rdf:type schema:Person
106 N92c98050014a427fa4100321ac76fab4 rdf:first N02416a219cb44bda9db7a83704ce2140
107 rdf:rest N5e64f42a6d304a88a5bba035a173e7ec
108 N95b272fde5c04e4d8dc9b194bd01b606 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
109 schema:familyName Kim
110 schema:givenName Woo Jin
111 rdf:type schema:Person
112 N965ce0db425f4350a235cdc8ae4e4502 rdf:first N5e6513f852e344bbad41c4c6285cf6c7
113 rdf:rest Na128f92839c946a3a5a417a3ad5b1c17
114 Na128f92839c946a3a5a417a3ad5b1c17 rdf:first Ne79a9ae692454b529909d4d7154cd900
115 rdf:rest Nc8cdc8a33a19472182765d8c02b02f17
116 Na8fca80d2fb0454389476baeed68c91e schema:name nlm_unique_id
117 schema:value 101516977
118 rdf:type schema:PropertyValue
119 Nae28aac491694eedba9c7435a58e12de schema:name dimensions_id
120 schema:value pub.1112460474
121 rdf:type schema:PropertyValue
122 Nb66c27d4ad7c4b5a97965d88ab94c2a7 rdf:first N82c3f38c97804ca096d087999a6fa7c9
123 rdf:rest N965ce0db425f4350a235cdc8ae4e4502
124 Nbeaae44ef41941d8be0f452dca173659 schema:name doi
125 schema:value 10.1186/s13148-019-0635-z
126 rdf:type schema:PropertyValue
127 Nbf28012a9eb346ccaca9f76971e1f217 schema:name readcube_id
128 schema:value 6649efbb60a76fb8cda923155125d6e93f0a6099ca587c99e81d170a05984bf6
129 rdf:type schema:PropertyValue
130 Nc8cdc8a33a19472182765d8c02b02f17 rdf:first N35cfffdb36024a8eb0582313c8a26001
131 rdf:rest N92c98050014a427fa4100321ac76fab4
132 Ne79a9ae692454b529909d4d7154cd900 schema:affiliation Nfa2c53e2bcca419180f5602efeba1ba1
133 schema:familyName Carnes
134 schema:givenName Megan U.
135 rdf:type schema:Person
136 Nedb0372197e541b993a92c8038708d8d schema:name pubmed_id
137 schema:value 30819252
138 rdf:type schema:PropertyValue
139 Nfa2c53e2bcca419180f5602efeba1ba1 schema:name OmicSoft, QIAGEN Bioinformatics, 27513, Cary, NC, USA
140 rdf:type schema:Organization
141 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
142 schema:name Medical and Health Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
145 schema:name Public Health and Health Services
146 rdf:type schema:DefinedTerm
147 sg:grant.2660462 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
148 rdf:type schema:MonetaryGrant
149 sg:grant.7470799 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
150 rdf:type schema:MonetaryGrant
151 sg:grant.7479733 http://pending.schema.org/fundedItem sg:pub.10.1186/s13148-019-0635-z
152 rdf:type schema:MonetaryGrant
153 sg:journal.1042271 schema:issn 1868-7075
154 1868-7083
155 schema:name Clinical Epigenetics
156 rdf:type schema:Periodical
157 sg:pub.10.1038/nature09270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050402786
158 https://doi.org/10.1038/nature09270
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ng.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023009366
161 https://doi.org/10.1038/ng.500
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
164 https://doi.org/10.1186/1471-2105-13-86
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1756-8935-6-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021964250
167 https://doi.org/10.1186/1756-8935-6-4
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1756-8935-8-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009478642
170 https://doi.org/10.1186/1756-8935-8-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/gb-2013-14-9-r105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031523910
173 https://doi.org/10.1186/gb-2013-14-9-r105
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/s12859-015-0568-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042836374
176 https://doi.org/10.1186/s12859-015-0568-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/s12940-016-0202-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020548485
179 https://doi.org/10.1186/s12940-016-0202-4
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s13059-016-1131-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074242434
182 https://doi.org/10.1186/s13059-016-1131-9
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.atherosclerosis.2010.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036393630
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.celrep.2016.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036514812
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.envint.2017.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091326848
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.envpol.2017.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084525910
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/aje/kwu186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017352955
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/bioinformatics/btq340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276303
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/bts034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025078414
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/bts545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023317678
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/bts680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923242
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/bioinformatics/btt684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042068352
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/bioinformatics/btu049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036696259
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/ije/dyr154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008991931
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1161/circgenetics.116.001506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027386887
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1183/09031936.00130014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008873933
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1289/ehp.1206010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038621873
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1289/ehp.1509966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032571357
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1289/ehp2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100866658
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1289/ehp36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064736896
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pone.0041361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047981654
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1615/critrevbiomedeng.2017019768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090968486
225 rdf:type schema:CreativeWork
226 https://doi.org/10.4172/2161-105x.1000169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072334440
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.280664.e schema:alternateName National Institute of Environmental Health Sciences
229 schema:name Epidemiology Branch, Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.410914.9 schema:alternateName National Cancer Center
232 schema:name Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, 10408, Goyang, South Korea
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.412010.6 schema:alternateName Kangwon National University
235 schema:name Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, 24289, Chuncheon, South Korea
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4494.d schema:alternateName University Medical Center Groningen
238 schema:name Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
239 Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
240 GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...