Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-04

AUTHORS

Tae Jeong Oh, Hyun Il Oh, Yang Yei Seo, Dongjun Jeong, Changjin Kim, Hyoun Woo Kang, Yoon Dae Han, Hyun Cheol Chung, Nam Kyu Kim, Sungwhan An

ABSTRACT

Background: Colorectal cancer (CRC) screening is the most efficient strategy to reduce disease-related mortality. Frequent aberrant DNA methylation is known to occur in selected genes and early during CRC development, which has emerged as a new epigenetic biomarker for early detection of CRC. Previously, we reported that we identified that CpG sites of SDC2 were aberrantly methylated in tumor tissues of most CRC patients through comprehensive methylation analysis and demonstrated a high potential of quantification of SDC2 methylation in blood for early detection of colorectal cancer. In this study, we aim to investigate the feasibility of quantifying SDC2 methylation in stool DNA for the early detection of CRC. The objective of this study was to confirm a high frequency of SDC2 methylation in tumor tissues at various stages of CRC and investigate the feasibility of a quantitative test for SDC2 methylation in fecal DNA by highly sensitive and accurate real-time PCR for early detection of CRC. Methods: Bisulfite-pyrosequencing assay was performed to measure the SDC2 methylation status in tissue samples. For methylation analysis in stool DNA, a highly sensitive and accurate method was applied which implements consecutive two rounds of PCR consisting of unidirectional linear target enrichment (LTE) of SDC2 and quantitative methylation-specific real time PCR (qMSP) for SDC2, named as meSDC2 LTE-qMSP assay. Its limit of detection was 0.1% methylation (corresponding to ~ 6 copies in total ~ 6200 genome copies). Results: Positive SDC2 methylation was observed in 100% of primary tumors, 90.6% of adenomatous polyps, 94.1% of hyperplastic polyps, and 0% of normal tissues. SDC2 methylation level also significantly (P < 0.01) increased according to the severity of lesions. In stool DNA test for SDC2 methylation by LTE-qMSP comparing CRC patients with various stages (I to IV) (n = 50) and precancerous lesions (n = 21) with healthy subjects (n = 22), the overall sensitivity was 90.0% for detecting CRC and 33.3% for detecting small polyps, with a specificity of 90.9%. Conclusions: Taken together, our result indicates that stool DNA-based SDC2 methylation test by LTE-qMSP is a potential noninvasive diagnostic tool for early detection of CRC. More... »

PAGES

126

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13148-017-0426-3

DOI

http://dx.doi.org/10.1186/s13148-017-0426-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093162886

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29225717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CpG Islands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenesis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HCT116 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HT29 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Syndecan-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Tae Jeong", 
        "id": "sg:person.011544421752.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544421752.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Hyun Il", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Yang Yei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412674.2", 
          "name": [
            "Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeong", 
        "givenName": "Dongjun", 
        "id": "sg:person.0606112571.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606112571.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412674.2", 
          "name": [
            "Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Changjin", 
        "id": "sg:person.01222016735.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222016735.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Dongguk University Ilsan Hospital, College of Medicine, Dongguk University, 27 Dongguk-ro Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.470090.a", 
          "name": [
            "Department of Internal Medicine, Dongguk University Ilsan Hospital, College of Medicine, Dongguk University, 27 Dongguk-ro Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyoun Woo", 
        "id": "sg:person.01312026504.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312026504.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Yoon Dae", 
        "id": "sg:person.0671226067.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671226067.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei Cancer Center Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Yonsei Cancer Center Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Hyun Cheol", 
        "id": "sg:person.016554426212.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554426212.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea", 
          "id": "http://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Nam Kyu", 
        "id": "sg:person.01034544570.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034544570.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Sungwhan", 
        "id": "sg:person.01046022403.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046022403.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12896-015-0148-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077603", 
          "https://doi.org/10.1186/s12896-015-0148-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003877309", 
          "https://doi.org/10.1038/onc.2009.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-8-91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045296320", 
          "https://doi.org/10.1186/1471-2199-8-91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2009.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014589753", 
          "https://doi.org/10.1038/ajg.2009.104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004186565", 
          "https://doi.org/10.1038/nrc1045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-04", 
    "datePublishedReg": "2017-12-04", 
    "description": "Background: Colorectal cancer (CRC) screening is the most efficient strategy to reduce disease-related mortality. Frequent aberrant DNA methylation is known to occur in selected genes and early during CRC development, which has emerged as a new epigenetic biomarker for early detection of CRC. Previously, we reported that we identified that CpG sites of SDC2 were aberrantly methylated in tumor tissues of most CRC patients through comprehensive methylation analysis and demonstrated a high potential of quantification of SDC2 methylation in blood for early detection of colorectal cancer. In this study, we aim to investigate the feasibility of quantifying SDC2 methylation in stool DNA for the early detection of CRC. The objective of this study was to confirm a high frequency of SDC2 methylation in tumor tissues at various stages of CRC and investigate the feasibility of a quantitative test for SDC2 methylation in fecal DNA by highly sensitive and accurate real-time PCR for early detection of CRC.\nMethods: Bisulfite-pyrosequencing assay was performed to measure the SDC2 methylation status in tissue samples. For methylation analysis in stool DNA, a highly sensitive and accurate method was applied which implements consecutive two rounds of PCR consisting of unidirectional linear target enrichment (LTE) of SDC2 and quantitative methylation-specific real time PCR (qMSP) for SDC2, named as meSDC2 LTE-qMSP assay. Its limit of detection was 0.1% methylation (corresponding to ~\u20096 copies in total ~\u20096200 genome copies).\nResults: Positive SDC2 methylation was observed in 100% of primary tumors, 90.6% of adenomatous polyps, 94.1% of hyperplastic polyps, and 0% of normal tissues. SDC2 methylation level also significantly (P\u2009<\u20090.01) increased according to the severity of lesions. In stool DNA test for SDC2 methylation by LTE-qMSP comparing CRC patients with various stages (I to IV) (n\u2009=\u200950) and precancerous lesions (n\u2009=\u200921) with healthy subjects (n\u2009=\u200922), the overall sensitivity was 90.0% for detecting CRC and 33.3% for detecting small polyps, with a specificity of 90.9%.\nConclusions: Taken together, our result indicates that stool DNA-based SDC2 methylation test by LTE-qMSP is a potential noninvasive diagnostic tool for early detection of CRC.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13148-017-0426-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042271", 
        "issn": [
          "1868-7075", 
          "1868-7083"
        ], 
        "name": "Clinical Epigenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "quantitative methylation-specific real-time PCR", 
      "stool DNA", 
      "early detection", 
      "CRC patients", 
      "colorectal cancer", 
      "real-time PCR", 
      "tumor tissue", 
      "methylation-specific real-time PCR", 
      "stages of CRC", 
      "colorectal cancer screening", 
      "stool DNA test", 
      "potential noninvasive diagnostic tools", 
      "most CRC patients", 
      "disease-related mortality", 
      "severity of lesions", 
      "noninvasive diagnostic tool", 
      "accurate real-time PCR", 
      "SDC2 methylation", 
      "primary tumor", 
      "cancer screening", 
      "precancerous lesions", 
      "CRC development", 
      "adenomatous polyps", 
      "hyperplastic polyps", 
      "healthy subjects", 
      "new epigenetic biomarkers", 
      "small polyps", 
      "normal tissues", 
      "comprehensive methylation analysis", 
      "overall sensitivity", 
      "CRC", 
      "tissue samples", 
      "time PCR", 
      "polyps", 
      "aberrant DNA methylation", 
      "DNA test", 
      "patients", 
      "methylation test", 
      "diagnostic tool", 
      "lesions", 
      "epigenetic biomarkers", 
      "cancer", 
      "tissue", 
      "methylation status", 
      "PCR", 
      "methylation levels", 
      "fecal DNA", 
      "methylation analysis", 
      "CpG sites", 
      "feasibility of quantifying", 
      "assays", 
      "stool", 
      "high frequency", 
      "tumors", 
      "mortality", 
      "blood", 
      "DNA methylation", 
      "biomarkers", 
      "severity", 
      "test", 
      "methylation", 
      "study", 
      "quantitative test", 
      "screening", 
      "subjects", 
      "DNA", 
      "status", 
      "rounds of PCR", 
      "detection", 
      "target enrichment", 
      "accurate method", 
      "specificity", 
      "stage", 
      "feasibility", 
      "levels", 
      "genes", 
      "sensitivity", 
      "analysis", 
      "objective", 
      "rounds", 
      "frequency", 
      "samples", 
      "development", 
      "strategies", 
      "sites", 
      "efficient strategy", 
      "quantification", 
      "bisulfite", 
      "potential", 
      "results", 
      "limit of detection", 
      "tool", 
      "high potential", 
      "method", 
      "enrichment", 
      "quantifying", 
      "limit", 
      "implements", 
      "Frequent aberrant DNA methylation", 
      "unidirectional linear target enrichment", 
      "linear target enrichment", 
      "LTE-qMSP assay", 
      "LTE-qMSP", 
      "quantifying SDC2 methylation"
    ], 
    "name": "Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer", 
    "pagination": "126", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093162886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13148-017-0426-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29225717"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13148-017-0426-3", 
      "https://app.dimensions.ai/details/publication/pub.1093162886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_722.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13148-017-0426-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13148-017-0426-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13148-017-0426-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13148-017-0426-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13148-017-0426-3'


 

This table displays all metadata directly associated to this object as RDF triples.

330 TRIPLES      22 PREDICATES      153 URIs      140 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13148-017-0426-3 schema:about N12dab014569944dd802966cdabe67e6c
2 N3ab6d805fd53426895d8836b85ff10d8
3 N426ed9ccf6e74870ae3d64661f99cbb2
4 N4c9aea19dde04d9695c2e4202f34c7d1
5 N55fea205339a436cbdeb4ea02d469fc2
6 N564d1e9736b6485bb0b6e4447af29cd9
7 N5f1822215df446c282664b2bf0fc9227
8 N76050060d7f7464b8012f72e3fc2f86a
9 N774eac41cca7459daca5e699f4f5bb37
10 N8eb57d4982a74e99b38be8cd30e92c2f
11 Na7c76220b9454b52b448e257f6755360
12 Na7ed01bf44864ef4a631e3ed2e259568
13 Nba8c026123b6438d90ddea7536eab549
14 Nbfe601565bd143e8bc0a1427cb5d919f
15 Ncbc7e476d3f34b1bab774d7cfcfdee7a
16 Nd758c600d42146578b3bddd6e79285c4
17 Nee4aa79a6c8748079e03edc6aca380a4
18 Nf1625f7276a34db39bf6a5af108d07e6
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N43e1d81d4c6f44aa999a34a44274ad1d
22 schema:citation sg:pub.10.1038/ajg.2009.104
23 sg:pub.10.1038/nrc1045
24 sg:pub.10.1038/onc.2009.122
25 sg:pub.10.1186/1471-2199-8-91
26 sg:pub.10.1186/s12896-015-0148-6
27 schema:datePublished 2017-12-04
28 schema:datePublishedReg 2017-12-04
29 schema:description Background: Colorectal cancer (CRC) screening is the most efficient strategy to reduce disease-related mortality. Frequent aberrant DNA methylation is known to occur in selected genes and early during CRC development, which has emerged as a new epigenetic biomarker for early detection of CRC. Previously, we reported that we identified that CpG sites of <i>SDC2</i> were aberrantly methylated in tumor tissues of most CRC patients through comprehensive methylation analysis and demonstrated a high potential of quantification of <i>SDC2</i> methylation in blood for early detection of colorectal cancer. In this study, we aim to investigate the feasibility of quantifying <i>SDC2</i> methylation in stool DNA for the early detection of CRC. The objective of this study was to confirm a high frequency of <i>SDC2</i> methylation in tumor tissues at various stages of CRC and investigate the feasibility of a quantitative test for <i>SDC2</i> methylation in fecal DNA by highly sensitive and accurate real-time PCR for early detection of CRC. Methods: Bisulfite-pyrosequencing assay was performed to measure the <i>SDC2</i> methylation status in tissue samples. For methylation analysis in stool DNA, a highly sensitive and accurate method was applied which implements consecutive two rounds of PCR consisting of unidirectional linear target enrichment (LTE) of <i>SDC2</i> and quantitative methylation-specific real time PCR (qMSP) for <i>SDC2</i>, named as me<i>SDC2</i> LTE-qMSP assay. Its limit of detection was 0.1% methylation (corresponding to ~ 6 copies in total ~ 6200 genome copies). Results: Positive <i>SDC2</i> methylation was observed in 100% of primary tumors, 90.6% of adenomatous polyps, 94.1% of hyperplastic polyps, and 0% of normal tissues. <i>SDC2</i> methylation level also significantly (<i>P</i> &lt; 0.01) increased according to the severity of lesions. In stool DNA test for <i>SDC2</i> methylation by LTE-qMSP comparing CRC patients with various stages (I to IV) (<i>n</i> = 50) and precancerous lesions (<i>n</i> = 21) with healthy subjects (<i>n</i> = 22), the overall sensitivity was 90.0% for detecting CRC and 33.3% for detecting small polyps, with a specificity of 90.9%. Conclusions: Taken together, our result indicates that stool DNA-based <i>SDC2</i> methylation test by LTE-qMSP is a potential noninvasive diagnostic tool for early detection of CRC.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N21c70ac60f0342cfb2daa53069ce464b
34 N8dcdab965fae4c54868a265a231d744d
35 sg:journal.1042271
36 schema:keywords CRC
37 CRC development
38 CRC patients
39 CpG sites
40 DNA
41 DNA methylation
42 DNA test
43 Frequent aberrant DNA methylation
44 LTE-qMSP
45 LTE-qMSP assay
46 PCR
47 SDC2 methylation
48 aberrant DNA methylation
49 accurate method
50 accurate real-time PCR
51 adenomatous polyps
52 analysis
53 assays
54 biomarkers
55 bisulfite
56 blood
57 cancer
58 cancer screening
59 colorectal cancer
60 colorectal cancer screening
61 comprehensive methylation analysis
62 detection
63 development
64 diagnostic tool
65 disease-related mortality
66 early detection
67 efficient strategy
68 enrichment
69 epigenetic biomarkers
70 feasibility
71 feasibility of quantifying
72 fecal DNA
73 frequency
74 genes
75 healthy subjects
76 high frequency
77 high potential
78 hyperplastic polyps
79 implements
80 lesions
81 levels
82 limit
83 limit of detection
84 linear target enrichment
85 method
86 methylation
87 methylation analysis
88 methylation levels
89 methylation status
90 methylation test
91 methylation-specific real-time PCR
92 mortality
93 most CRC patients
94 new epigenetic biomarkers
95 noninvasive diagnostic tool
96 normal tissues
97 objective
98 overall sensitivity
99 patients
100 polyps
101 potential
102 potential noninvasive diagnostic tools
103 precancerous lesions
104 primary tumor
105 quantification
106 quantifying
107 quantifying SDC2 methylation
108 quantitative methylation-specific real-time PCR
109 quantitative test
110 real-time PCR
111 results
112 rounds
113 rounds of PCR
114 samples
115 screening
116 sensitivity
117 severity
118 severity of lesions
119 sites
120 small polyps
121 specificity
122 stage
123 stages of CRC
124 status
125 stool
126 stool DNA
127 stool DNA test
128 strategies
129 study
130 subjects
131 target enrichment
132 test
133 time PCR
134 tissue
135 tissue samples
136 tool
137 tumor tissue
138 tumors
139 unidirectional linear target enrichment
140 schema:name Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer
141 schema:pagination 126
142 schema:productId N467d81d729d94779b132cd47d0c0e41e
143 N79ea8f9eafe64720aff21f1213e19797
144 N80b3d27fe7c04d7cbd9fc51e5d8e0ee1
145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093162886
146 https://doi.org/10.1186/s13148-017-0426-3
147 schema:sdDatePublished 2022-01-01T18:43
148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
149 schema:sdPublisher Ndf7445abd4c6475fb2d5f75293c1a351
150 schema:url https://doi.org/10.1186/s13148-017-0426-3
151 sgo:license sg:explorer/license/
152 sgo:sdDataset articles
153 rdf:type schema:ScholarlyArticle
154 N05bffc06e4034a11882bb8ca4755ff85 rdf:first sg:person.01312026504.84
155 rdf:rest Nbed759809a4646a6b5c90667b5d9027a
156 N12dab014569944dd802966cdabe67e6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Syndecan-2
158 rdf:type schema:DefinedTerm
159 N21c70ac60f0342cfb2daa53069ce464b schema:volumeNumber 9
160 rdf:type schema:PublicationVolume
161 N2afe8de023ee4d4d80b346da3a663f2c rdf:first sg:person.01222016735.13
162 rdf:rest N05bffc06e4034a11882bb8ca4755ff85
163 N3ab6d805fd53426895d8836b85ff10d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Colorectal Neoplasms
165 rdf:type schema:DefinedTerm
166 N3f0df0fa346c4fe5802a407dc9e4e818 rdf:first sg:person.016554426212.74
167 rdf:rest N9e04f6142bf6419ebd3a21ebe8786032
168 N426ed9ccf6e74870ae3d64661f99cbb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Sensitivity and Specificity
170 rdf:type schema:DefinedTerm
171 N43e1d81d4c6f44aa999a34a44274ad1d rdf:first sg:person.011544421752.84
172 rdf:rest N9fcc68623a4049ef8d772d0c207ea72b
173 N467d81d729d94779b132cd47d0c0e41e schema:name pubmed_id
174 schema:value 29225717
175 rdf:type schema:PropertyValue
176 N4802a5c04a7b45e4a2f685b166372a7b rdf:first sg:person.01046022403.86
177 rdf:rest rdf:nil
178 N4c9aea19dde04d9695c2e4202f34c7d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name HT29 Cells
180 rdf:type schema:DefinedTerm
181 N4e893daab3c24d25b2f60ca9efd280e3 schema:affiliation grid-institutes:None
182 schema:familyName Oh
183 schema:givenName Hyun Il
184 rdf:type schema:Person
185 N55fea205339a436cbdeb4ea02d469fc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Sequence Analysis, DNA
187 rdf:type schema:DefinedTerm
188 N564d1e9736b6485bb0b6e4447af29cd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Male
190 rdf:type schema:DefinedTerm
191 N5f1822215df446c282664b2bf0fc9227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Aged
193 rdf:type schema:DefinedTerm
194 N76050060d7f7464b8012f72e3fc2f86a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Feces
196 rdf:type schema:DefinedTerm
197 N774eac41cca7459daca5e699f4f5bb37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Middle Aged
199 rdf:type schema:DefinedTerm
200 N79ea8f9eafe64720aff21f1213e19797 schema:name doi
201 schema:value 10.1186/s13148-017-0426-3
202 rdf:type schema:PropertyValue
203 N80b3d27fe7c04d7cbd9fc51e5d8e0ee1 schema:name dimensions_id
204 schema:value pub.1093162886
205 rdf:type schema:PropertyValue
206 N8dcdab965fae4c54868a265a231d744d schema:issueNumber 1
207 rdf:type schema:PublicationIssue
208 N8e75fba426504655a6050bef9b00bb3a rdf:first sg:person.0606112571.70
209 rdf:rest N2afe8de023ee4d4d80b346da3a663f2c
210 N8eb57d4982a74e99b38be8cd30e92c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Epigenesis, Genetic
212 rdf:type schema:DefinedTerm
213 N9e04f6142bf6419ebd3a21ebe8786032 rdf:first sg:person.01034544570.10
214 rdf:rest N4802a5c04a7b45e4a2f685b166372a7b
215 N9fcc68623a4049ef8d772d0c207ea72b rdf:first N4e893daab3c24d25b2f60ca9efd280e3
216 rdf:rest Nb4dc5dbdc51a4a5791284cff37f99b83
217 Na7c76220b9454b52b448e257f6755360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name DNA Methylation
219 rdf:type schema:DefinedTerm
220 Na7ed01bf44864ef4a631e3ed2e259568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Biomarkers, Tumor
222 rdf:type schema:DefinedTerm
223 Nb4dc5dbdc51a4a5791284cff37f99b83 rdf:first Nd1b5bf9bde9c4e9d9b752fbd96f78175
224 rdf:rest N8e75fba426504655a6050bef9b00bb3a
225 Nba8c026123b6438d90ddea7536eab549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Humans
227 rdf:type schema:DefinedTerm
228 Nbed759809a4646a6b5c90667b5d9027a rdf:first sg:person.0671226067.82
229 rdf:rest N3f0df0fa346c4fe5802a407dc9e4e818
230 Nbfe601565bd143e8bc0a1427cb5d919f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
231 schema:name Feasibility Studies
232 rdf:type schema:DefinedTerm
233 Ncbc7e476d3f34b1bab774d7cfcfdee7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
234 schema:name HCT116 Cells
235 rdf:type schema:DefinedTerm
236 Nd1b5bf9bde9c4e9d9b752fbd96f78175 schema:affiliation grid-institutes:None
237 schema:familyName Seo
238 schema:givenName Yang Yei
239 rdf:type schema:Person
240 Nd758c600d42146578b3bddd6e79285c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
241 schema:name CpG Islands
242 rdf:type schema:DefinedTerm
243 Ndf7445abd4c6475fb2d5f75293c1a351 schema:name Springer Nature - SN SciGraph project
244 rdf:type schema:Organization
245 Nee4aa79a6c8748079e03edc6aca380a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
246 schema:name Adult
247 rdf:type schema:DefinedTerm
248 Nf1625f7276a34db39bf6a5af108d07e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
249 schema:name Female
250 rdf:type schema:DefinedTerm
251 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
252 schema:name Medical and Health Sciences
253 rdf:type schema:DefinedTerm
254 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
255 schema:name Oncology and Carcinogenesis
256 rdf:type schema:DefinedTerm
257 sg:journal.1042271 schema:issn 1868-7075
258 1868-7083
259 schema:name Clinical Epigenetics
260 schema:publisher Springer Nature
261 rdf:type schema:Periodical
262 sg:person.01034544570.10 schema:affiliation grid-institutes:grid.15444.30
263 schema:familyName Kim
264 schema:givenName Nam Kyu
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034544570.10
266 rdf:type schema:Person
267 sg:person.01046022403.86 schema:affiliation grid-institutes:None
268 schema:familyName An
269 schema:givenName Sungwhan
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046022403.86
271 rdf:type schema:Person
272 sg:person.011544421752.84 schema:affiliation grid-institutes:None
273 schema:familyName Oh
274 schema:givenName Tae Jeong
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011544421752.84
276 rdf:type schema:Person
277 sg:person.01222016735.13 schema:affiliation grid-institutes:grid.412674.2
278 schema:familyName Kim
279 schema:givenName Changjin
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222016735.13
281 rdf:type schema:Person
282 sg:person.01312026504.84 schema:affiliation grid-institutes:grid.470090.a
283 schema:familyName Kang
284 schema:givenName Hyoun Woo
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312026504.84
286 rdf:type schema:Person
287 sg:person.016554426212.74 schema:affiliation grid-institutes:grid.15444.30
288 schema:familyName Chung
289 schema:givenName Hyun Cheol
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554426212.74
291 rdf:type schema:Person
292 sg:person.0606112571.70 schema:affiliation grid-institutes:grid.412674.2
293 schema:familyName Jeong
294 schema:givenName Dongjun
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606112571.70
296 rdf:type schema:Person
297 sg:person.0671226067.82 schema:affiliation grid-institutes:grid.15444.30
298 schema:familyName Han
299 schema:givenName Yoon Dae
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671226067.82
301 rdf:type schema:Person
302 sg:pub.10.1038/ajg.2009.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014589753
303 https://doi.org/10.1038/ajg.2009.104
304 rdf:type schema:CreativeWork
305 sg:pub.10.1038/nrc1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004186565
306 https://doi.org/10.1038/nrc1045
307 rdf:type schema:CreativeWork
308 sg:pub.10.1038/onc.2009.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003877309
309 https://doi.org/10.1038/onc.2009.122
310 rdf:type schema:CreativeWork
311 sg:pub.10.1186/1471-2199-8-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045296320
312 https://doi.org/10.1186/1471-2199-8-91
313 rdf:type schema:CreativeWork
314 sg:pub.10.1186/s12896-015-0148-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032077603
315 https://doi.org/10.1186/s12896-015-0148-6
316 rdf:type schema:CreativeWork
317 grid-institutes:None schema:alternateName Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea
318 schema:name Genomictree, Inc, 44-6 Techno 10-ro Yuseong-gu, Daejeon, 34027 South Korea
319 rdf:type schema:Organization
320 grid-institutes:grid.15444.30 schema:alternateName Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea
321 Yonsei Cancer Center Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea
322 schema:name Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea
323 Yonsei Cancer Center Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722 South Korea
324 rdf:type schema:Organization
325 grid-institutes:grid.412674.2 schema:alternateName Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea
326 schema:name Department of Pathology, College of Medicine, Soonchunhyang University, 23-20 Byeongmyeong-dong Dongnam-gu, Cheonan, Chungcheongnam-do 31151 South Korea
327 rdf:type schema:Organization
328 grid-institutes:grid.470090.a schema:alternateName Department of Internal Medicine, Dongguk University Ilsan Hospital, College of Medicine, Dongguk University, 27 Dongguk-ro Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 South Korea
329 schema:name Department of Internal Medicine, Dongguk University Ilsan Hospital, College of Medicine, Dongguk University, 27 Dongguk-ro Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 South Korea
330 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...