Pragmatic trials: ignoring a mediator and adjusting for confounding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Paraskevi Pericleous

ABSTRACT

OBJECTIVES: In pragmatic trials, the new treatment is compared with usual care (heterogeneous control arm) that makes the comparison of the new treatment with each treatment within the control arm more difficult. The usual assumption is that we can fully capture the relations between different quantities. In this paper we use simulation to assess the performance of statistical methods that adjust for confounding when the assumed relations are not true. The true relations contain a mediator and heterogeneity with or without confounding, but the assumption is that there is no mediator and that confounding and heterogeneity are fully captured. The statistical methods that are compared include multivariable logistic regression, propensity score, disease risk score, inverse probability weighting, doubly robust inverse probability weighting and standardisation. RESULTS: The misconception that there is no mediator can cause to misleading comparative effectiveness of individual treatments when a method that estimates the conditional causal effect is used. Using a method that estimates the marginal causal effect is a better approach, but not for all scenarios. More... »

PAGES

156

Journal

TITLE

BMC Research Notes

ISSUE

1

VOLUME

12

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13104-019-4188-1

DOI

http://dx.doi.org/10.1186/s13104-019-4188-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112897429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30894221


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Office for National Statistics", 
          "id": "https://www.grid.ac/institutes/grid.426100.1", 
          "name": [
            "Data Science Campus, Office for National Statistics, Newport, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pericleous", 
        "givenName": "Paraskevi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1751-5823.2011.00158.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003927889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclinepi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023280748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/ebm.14.4.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023727865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039048956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039048956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039048956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta18430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/10321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106992684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/10321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106992684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/10321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106992684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "OBJECTIVES: In pragmatic trials, the new treatment is compared with usual care (heterogeneous control arm) that makes the comparison of the new treatment with each treatment within the control arm more difficult. The usual assumption is that we can fully capture the relations between different quantities. In this paper we use simulation to assess the performance of statistical methods that adjust for confounding when the assumed relations are not true. The true relations contain a mediator and heterogeneity with or without confounding, but the assumption is that there is no mediator and that confounding and heterogeneity are fully captured. The statistical methods that are compared include multivariable logistic regression, propensity score, disease risk score, inverse probability weighting, doubly robust inverse probability weighting and standardisation.\nRESULTS: The misconception that there is no mediator can cause to misleading comparative effectiveness of individual treatments when a method that estimates the conditional causal effect is used. Using a method that estimates the marginal causal effect is a better approach, but not for all scenarios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13104-019-4188-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Pragmatic trials: ignoring a mediator and adjusting for confounding", 
    "pagination": "156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48987afff2d5f0daa491ca1407a3ed84f6932504c16904688de2ce11270b9e37"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30894221"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13104-019-4188-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112897429"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13104-019-4188-1", 
      "https://app.dimensions.ai/details/publication/pub.1112897429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13104-019-4188-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13104-019-4188-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13104-019-4188-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13104-019-4188-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13104-019-4188-1'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      35 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13104-019-4188-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N81f246436fa34559a964bffd4768afbf
4 schema:citation https://doi.org/10.1016/j.jclinepi.2006.05.010
5 https://doi.org/10.1097/ede.0000000000000388
6 https://doi.org/10.1111/j.1751-5823.2011.00158.x
7 https://doi.org/10.1136/ebm.14.4.101
8 https://doi.org/10.2196/10321
9 https://doi.org/10.3310/hta18430
10 schema:datePublished 2019-12
11 schema:datePublishedReg 2019-12-01
12 schema:description OBJECTIVES: In pragmatic trials, the new treatment is compared with usual care (heterogeneous control arm) that makes the comparison of the new treatment with each treatment within the control arm more difficult. The usual assumption is that we can fully capture the relations between different quantities. In this paper we use simulation to assess the performance of statistical methods that adjust for confounding when the assumed relations are not true. The true relations contain a mediator and heterogeneity with or without confounding, but the assumption is that there is no mediator and that confounding and heterogeneity are fully captured. The statistical methods that are compared include multivariable logistic regression, propensity score, disease risk score, inverse probability weighting, doubly robust inverse probability weighting and standardisation. RESULTS: The misconception that there is no mediator can cause to misleading comparative effectiveness of individual treatments when a method that estimates the conditional causal effect is used. Using a method that estimates the marginal causal effect is a better approach, but not for all scenarios.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N1085cc09c76e478b8299da39edb6956c
17 N81a0404983e74635bc727710b5c5a9e2
18 sg:journal.1039457
19 schema:name Pragmatic trials: ignoring a mediator and adjusting for confounding
20 schema:pagination 156
21 schema:productId N0cafdea1448340e3924b785702c61734
22 N1c032211da724d02bd8cc7df598899dc
23 N3ff2719f845947bca4cd8251384fcf0a
24 N7f8eade3e5494ddcb99bd8a67e9e58b5
25 Neccfffb68305418b96615bb6f216a7b5
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112897429
27 https://doi.org/10.1186/s13104-019-4188-1
28 schema:sdDatePublished 2019-04-11T13:52
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nc9128ac6d0124b7c9aa0120326e202a0
31 schema:url https://link.springer.com/10.1186%2Fs13104-019-4188-1
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0cafdea1448340e3924b785702c61734 schema:name nlm_unique_id
36 schema:value 101462768
37 rdf:type schema:PropertyValue
38 N1085cc09c76e478b8299da39edb6956c schema:volumeNumber 12
39 rdf:type schema:PublicationVolume
40 N1c032211da724d02bd8cc7df598899dc schema:name doi
41 schema:value 10.1186/s13104-019-4188-1
42 rdf:type schema:PropertyValue
43 N3ff2719f845947bca4cd8251384fcf0a schema:name dimensions_id
44 schema:value pub.1112897429
45 rdf:type schema:PropertyValue
46 N7f8eade3e5494ddcb99bd8a67e9e58b5 schema:name pubmed_id
47 schema:value 30894221
48 rdf:type schema:PropertyValue
49 N81a0404983e74635bc727710b5c5a9e2 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N81f246436fa34559a964bffd4768afbf rdf:first Nc1a76044365b48b1a6479468f6d11c21
52 rdf:rest rdf:nil
53 Nc1a76044365b48b1a6479468f6d11c21 schema:affiliation https://www.grid.ac/institutes/grid.426100.1
54 schema:familyName Pericleous
55 schema:givenName Paraskevi
56 rdf:type schema:Person
57 Nc9128ac6d0124b7c9aa0120326e202a0 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Neccfffb68305418b96615bb6f216a7b5 schema:name readcube_id
60 schema:value 48987afff2d5f0daa491ca1407a3ed84f6932504c16904688de2ce11270b9e37
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1039457 schema:issn 1756-0500
69 schema:name BMC Research Notes
70 rdf:type schema:Periodical
71 https://doi.org/10.1016/j.jclinepi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023280748
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1097/ede.0000000000000388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039048956
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1111/j.1751-5823.2011.00158.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003927889
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1136/ebm.14.4.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023727865
78 rdf:type schema:CreativeWork
79 https://doi.org/10.2196/10321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106992684
80 rdf:type schema:CreativeWork
81 https://doi.org/10.3310/hta18430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139425
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.426100.1 schema:alternateName Office for National Statistics
84 schema:name Data Science Campus, Office for National Statistics, Newport, UK
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...