Methods for detecting Gemmata spp. bacteremia in the microbiology laboratory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jacques-Robert Christen, Edwin Edmond, Michel Drancourt

ABSTRACT

OBJECTIVE: Gemmata bacteria are fastidious, Gram-negative and aerobic. The only representatives are Gemmata obscuriglobus and Gemmata massiliana. These Planctomycetes appear to be a part of human digestive tract microbiome, and G. massiliana has been isolated from water. Further specific detection in the blood of two patients with febrile neutropenia suggests that Gemmata bacteremia may remain under-documented. The objective of this study was to develop an effective protocol to document Gemmata spp. bacteremia in the laboratory. Using mock-infected and control blood specimens, three methods for detecting Gemmata bacteremia, namely, automated microbial detection, culture on solid medium, and quantitative polymerase chain reaction (PCR), have been developed and studied. RESULTS: Gemmata spp. were undetected by automated blood culture system but culturing mock-infected blood on Caulobacter agar detected ≥ 102 G. obscuriglobus bacteria/mL and ≥ 104 G. massiliana bacteria/mL. Specific real-time PCR detected 102 Gemmata bacteria/mL. These protocols may be used to investigate the epidemiology of Gemmata spp. bacteremia. More... »

PAGES

11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13104-017-3119-2

DOI

http://dx.doi.org/10.1186/s13104-017-3119-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100258815

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29310696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteremia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Planctomycetales", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Real-Time Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Laveran", 
          "id": "https://www.grid.ac/institutes/grid.414005.4", 
          "name": [
            "URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU M\u00e9diterran\u00e9e Infection, Aix Marseille Universit\u00e9, 19-21 Bd Jean Moulin, 13005, Marseille, France", 
            "Department of Infectious Diseases and Tropical Medicine, Laveran Military Teaching Hospital, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christen", 
        "givenName": "Jacques-Robert", 
        "id": "sg:person.07400344651.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400344651.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Infectious and Emerging Tropical Diseases", 
          "id": "https://www.grid.ac/institutes/grid.464138.c", 
          "name": [
            "URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU M\u00e9diterran\u00e9e Infection, Aix Marseille Universit\u00e9, 19-21 Bd Jean Moulin, 13005, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edmond", 
        "givenName": "Edwin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Unit on Infectious and Emerging Tropical Diseases", 
          "id": "https://www.grid.ac/institutes/grid.464138.c", 
          "name": [
            "URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU M\u00e9diterran\u00e9e Infection, Aix Marseille Universit\u00e9, 19-21 Bd Jean Moulin, 13005, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drancourt", 
        "givenName": "Michel", 
        "id": "sg:person.01106456741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106456741.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrmicro2578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001868665", 
          "https://doi.org/10.1038/nrmicro2578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1758-2229.2010.00176.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002299152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1758-2229.2010.00176.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002299152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijantimicag.2012.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004055102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40793-015-0103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006573317", 
          "https://doi.org/10.1186/s40793-015-0103-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014785724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.01207-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.6382009.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016450247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.6382009.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016450247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.42.5.2197-2202.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018016600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00284-015-0845-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020018453", 
          "https://doi.org/10.1007/s00284-015-0845-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13062-015-0041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470611", 
          "https://doi.org/10.1186/s13062-015-0041-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13062-015-0041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470611", 
          "https://doi.org/10.1186/s13062-015-0041-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/apm.12087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034657304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/fmb-2015-0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040167149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02342136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041742554", 
          "https://doi.org/10.1007/bf02342136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02342136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041742554", 
          "https://doi.org/10.1007/bf02342136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046135038", 
          "https://doi.org/10.1186/1471-2105-13-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047979829", 
          "https://doi.org/10.1186/1471-2164-9-576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048513445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/600885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050165478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/infdis/157.3.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059700806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/00286ir01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074658764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076348081", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0169432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083401747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmi.2017.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084066625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "OBJECTIVE: Gemmata bacteria are fastidious, Gram-negative and aerobic. The only representatives are Gemmata obscuriglobus and Gemmata massiliana. These Planctomycetes appear to be a part of human digestive tract microbiome, and G. massiliana has been isolated from water. Further specific detection in the blood of two patients with febrile neutropenia suggests that Gemmata bacteremia may remain under-documented. The objective of this study was to develop an effective protocol to document Gemmata spp. bacteremia in the laboratory. Using mock-infected and control blood specimens, three methods for detecting Gemmata bacteremia, namely, automated microbial detection, culture on solid medium, and quantitative polymerase chain reaction (PCR), have been developed and studied.\nRESULTS: Gemmata spp. were undetected by automated blood culture system but culturing mock-infected blood on Caulobacter agar detected \u2265\u00a0102 G. obscuriglobus bacteria/mL and \u2265\u00a0104 G. massiliana bacteria/mL. Specific real-time PCR detected 102 Gemmata bacteria/mL. These protocols may be used to investigate the epidemiology of Gemmata spp. bacteremia.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13104-017-3119-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Methods for detecting Gemmata spp. bacteremia in the microbiology laboratory", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c66bd2a73e9c83c9908c232c595d09be7b6cd793b24af511d783258ce53e7358"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29310696"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13104-017-3119-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100258815"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13104-017-3119-2", 
      "https://app.dimensions.ai/details/publication/pub.1100258815"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s13104-017-3119-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13104-017-3119-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13104-017-3119-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13104-017-3119-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13104-017-3119-2'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      55 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13104-017-3119-2 schema:about N26c429e4b00e4ba1830cdaf04882e89b
2 N2f365bfc5f254bd58919e9633244a3f7
3 N5937efc943c340c899bc188da667d9a9
4 N95f9c41730e24823999fb8b034a4b3a9
5 anzsrc-for:06
6 anzsrc-for:0605
7 schema:author N34e2778c16b14a21b7b0b50c49eff11c
8 schema:citation sg:pub.10.1007/bf02342136
9 sg:pub.10.1007/s00284-015-0845-3
10 sg:pub.10.1038/nrmicro2578
11 sg:pub.10.1186/1471-2105-13-134
12 sg:pub.10.1186/1471-2164-9-576
13 sg:pub.10.1186/s13062-015-0041-1
14 sg:pub.10.1186/s40793-015-0103-0
15 https://app.dimensions.ai/details/publication/pub.1076348081
16 https://doi.org/10.1016/j.cmi.2017.02.031
17 https://doi.org/10.1016/j.ijantimicag.2012.10.012
18 https://doi.org/10.1046/j.1365-2958.1997.6382009.x
19 https://doi.org/10.1086/600885
20 https://doi.org/10.1093/bioinformatics/btm091
21 https://doi.org/10.1093/infdis/157.3.565
22 https://doi.org/10.1093/nar/gks596
23 https://doi.org/10.1111/apm.12087
24 https://doi.org/10.1111/j.1758-2229.2010.00176.x
25 https://doi.org/10.1128/jcm.01207-14
26 https://doi.org/10.1128/jcm.42.5.2197-2202.2004
27 https://doi.org/10.1371/journal.pone.0169432
28 https://doi.org/10.2144/00286ir01
29 https://doi.org/10.2217/fmb-2015-0001
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description OBJECTIVE: Gemmata bacteria are fastidious, Gram-negative and aerobic. The only representatives are Gemmata obscuriglobus and Gemmata massiliana. These Planctomycetes appear to be a part of human digestive tract microbiome, and G. massiliana has been isolated from water. Further specific detection in the blood of two patients with febrile neutropenia suggests that Gemmata bacteremia may remain under-documented. The objective of this study was to develop an effective protocol to document Gemmata spp. bacteremia in the laboratory. Using mock-infected and control blood specimens, three methods for detecting Gemmata bacteremia, namely, automated microbial detection, culture on solid medium, and quantitative polymerase chain reaction (PCR), have been developed and studied. RESULTS: Gemmata spp. were undetected by automated blood culture system but culturing mock-infected blood on Caulobacter agar detected ≥ 102 G. obscuriglobus bacteria/mL and ≥ 104 G. massiliana bacteria/mL. Specific real-time PCR detected 102 Gemmata bacteria/mL. These protocols may be used to investigate the epidemiology of Gemmata spp. bacteremia.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N4b5892adef8343a097d0f9b42366759b
37 N529a466cf6b34866bc2bb3cb32cb02e5
38 sg:journal.1039457
39 schema:name Methods for detecting Gemmata spp. bacteremia in the microbiology laboratory
40 schema:pagination 11
41 schema:productId N119d7cb1e1b546dba7c2fb8e2cae3b47
42 N27431d9dd3ea4f8c8fc4094350f57bcd
43 N34a210b04f55455e915a1b30cd0fea65
44 Nd8be9a7a15ea4af3b5f3388ebd533ccf
45 Nf460d7eca2724e27a2a64a79e62bc5b7
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100258815
47 https://doi.org/10.1186/s13104-017-3119-2
48 schema:sdDatePublished 2019-04-11T01:53
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N01fb94ec91534b32a7d10f6c0e9d0572
51 schema:url http://link.springer.com/10.1186/s13104-017-3119-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N01fb94ec91534b32a7d10f6c0e9d0572 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N119d7cb1e1b546dba7c2fb8e2cae3b47 schema:name pubmed_id
58 schema:value 29310696
59 rdf:type schema:PropertyValue
60 N26c429e4b00e4ba1830cdaf04882e89b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Bacteremia
62 rdf:type schema:DefinedTerm
63 N27431d9dd3ea4f8c8fc4094350f57bcd schema:name nlm_unique_id
64 schema:value 101462768
65 rdf:type schema:PropertyValue
66 N2f365bfc5f254bd58919e9633244a3f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Real-Time Polymerase Chain Reaction
68 rdf:type schema:DefinedTerm
69 N34a210b04f55455e915a1b30cd0fea65 schema:name dimensions_id
70 schema:value pub.1100258815
71 rdf:type schema:PropertyValue
72 N34e2778c16b14a21b7b0b50c49eff11c rdf:first sg:person.07400344651.33
73 rdf:rest Nf1662599730c4830835a818fee57b7e6
74 N4b5892adef8343a097d0f9b42366759b schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N529a466cf6b34866bc2bb3cb32cb02e5 schema:volumeNumber 11
77 rdf:type schema:PublicationVolume
78 N52fd57fef042419b9d485b4e92fbbf61 rdf:first sg:person.01106456741.46
79 rdf:rest rdf:nil
80 N5937efc943c340c899bc188da667d9a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Humans
82 rdf:type schema:DefinedTerm
83 N83fcd8312e0e42b9866fb0c69e96be13 schema:affiliation https://www.grid.ac/institutes/grid.464138.c
84 schema:familyName Edmond
85 schema:givenName Edwin
86 rdf:type schema:Person
87 N95f9c41730e24823999fb8b034a4b3a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Planctomycetales
89 rdf:type schema:DefinedTerm
90 Nd8be9a7a15ea4af3b5f3388ebd533ccf schema:name doi
91 schema:value 10.1186/s13104-017-3119-2
92 rdf:type schema:PropertyValue
93 Nf1662599730c4830835a818fee57b7e6 rdf:first N83fcd8312e0e42b9866fb0c69e96be13
94 rdf:rest N52fd57fef042419b9d485b4e92fbbf61
95 Nf460d7eca2724e27a2a64a79e62bc5b7 schema:name readcube_id
96 schema:value c66bd2a73e9c83c9908c232c595d09be7b6cd793b24af511d783258ce53e7358
97 rdf:type schema:PropertyValue
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
102 schema:name Microbiology
103 rdf:type schema:DefinedTerm
104 sg:journal.1039457 schema:issn 1756-0500
105 schema:name BMC Research Notes
106 rdf:type schema:Periodical
107 sg:person.01106456741.46 schema:affiliation https://www.grid.ac/institutes/grid.464138.c
108 schema:familyName Drancourt
109 schema:givenName Michel
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106456741.46
111 rdf:type schema:Person
112 sg:person.07400344651.33 schema:affiliation https://www.grid.ac/institutes/grid.414005.4
113 schema:familyName Christen
114 schema:givenName Jacques-Robert
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400344651.33
116 rdf:type schema:Person
117 sg:pub.10.1007/bf02342136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041742554
118 https://doi.org/10.1007/bf02342136
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00284-015-0845-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020018453
121 https://doi.org/10.1007/s00284-015-0845-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nrmicro2578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001868665
124 https://doi.org/10.1038/nrmicro2578
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/1471-2105-13-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046135038
127 https://doi.org/10.1186/1471-2105-13-134
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2164-9-576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047979829
130 https://doi.org/10.1186/1471-2164-9-576
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/s13062-015-0041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470611
133 https://doi.org/10.1186/s13062-015-0041-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s40793-015-0103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006573317
136 https://doi.org/10.1186/s40793-015-0103-0
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1076348081 schema:CreativeWork
139 https://doi.org/10.1016/j.cmi.2017.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084066625
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijantimicag.2012.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055102
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1046/j.1365-2958.1997.6382009.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016450247
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/600885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050165478
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/btm091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048513445
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/infdis/157.3.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059700806
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/nar/gks596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014785724
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/apm.12087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034657304
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1758-2229.2010.00176.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002299152
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1128/jcm.01207-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015287109
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1128/jcm.42.5.2197-2202.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016600
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pone.0169432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401747
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2144/00286ir01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074658764
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2217/fmb-2015-0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040167149
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.414005.4 schema:alternateName Hôpital Laveran
168 schema:name Department of Infectious Diseases and Tropical Medicine, Laveran Military Teaching Hospital, Marseille, France
169 URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.464138.c schema:alternateName Research Unit on Infectious and Emerging Tropical Diseases
172 schema:name URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...