AdapterRemoval v2: rapid adapter trimming, identification, and read merging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Mikkel Schubert, Stinus Lindgreen, Ludovic Orlando

ABSTRACT

BACKGROUND: As high-throughput sequencing platforms produce longer and longer reads, sequences generated from short inserts, such as those obtained from fossil and degraded material, are increasingly expected to contain adapter sequences. Efficient adapter trimming algorithms are also needed to process the growing amount of data generated per sequencing run. FINDINGS: We introduce AdapterRemoval v2, a major revision of AdapterRemoval v1, which introduces (i) striking improvements in throughput, through the use of single instruction, multiple data (SIMD; SSE1 and SSE2) instructions and multi-threading support, (ii) the ability to handle datasets containing reads or read-pairs with different adapters or adapter pairs, (iii) simultaneous demultiplexing and adapter trimming, (iv) the ability to reconstruct adapter sequences from paired-end reads for poorly documented data sets, and (v) native gzip and bzip2 support. CONCLUSIONS: We show that AdapterRemoval v2 compares favorably with existing tools, while offering superior throughput to most alternatives examined here, both for single and multi-threaded operations. More... »

PAGES

88

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13104-016-1900-2

DOI

http://dx.doi.org/10.1186/s13104-016-1900-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040653018

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26868221


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schubert", 
        "givenName": "Mikkel", 
        "id": "sg:person.0774220504.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774220504.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark", 
            "Carlsberg Research Laboratory, Gamle Carlsberg Vej 4-10, 1799, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgreen", 
        "givenName": "Stinus", 
        "id": "sg:person.0635177211.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635177211.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark", 
            "Laboratoire AMIS, Universit\u00e9 de Toulouse, University Paul Sabatier (UPS), CNRS UMR 5288, 37 All\u00e9es Jules Guesde, 31000, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlando", 
        "givenName": "Ludovic", 
        "id": "sg:person.01201152047.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201152047.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymeth.2013.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2013.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010435278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2013.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011945276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672942", 
          "https://doi.org/10.1186/1756-0500-5-337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0500-5-337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672942", 
          "https://doi.org/10.1186/1756-0500-5-337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/biology1030895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018168136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-516-9_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018322075", 
          "https://doi.org/10.1007/978-1-61779-516-9_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2014.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020179577", 
          "https://doi.org/10.1038/nprot.2014.063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025288251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028996959", 
          "https://doi.org/10.1038/nrg3935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030198285", 
          "https://doi.org/10.1186/1471-2105-15-182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031241489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039045908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-16-s1-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048032234", 
          "https://doi.org/10.1186/1471-2105-16-s1-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.12680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052203348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1875036201307010001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069237740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: As high-throughput sequencing platforms produce longer and longer reads, sequences generated from short inserts, such as those obtained from fossil and degraded material, are increasingly expected to contain adapter sequences. Efficient adapter trimming algorithms are also needed to process the growing amount of data generated per sequencing run.\nFINDINGS: We introduce AdapterRemoval v2, a major revision of AdapterRemoval v1, which introduces (i) striking improvements in throughput, through the use of single instruction, multiple data (SIMD; SSE1 and SSE2) instructions and multi-threading support, (ii) the ability to handle datasets containing reads or read-pairs with different adapters or adapter pairs, (iii) simultaneous demultiplexing and adapter trimming, (iv) the ability to reconstruct adapter sequences from paired-end reads for poorly documented data sets, and (v) native gzip and bzip2 support.\nCONCLUSIONS: We show that AdapterRemoval v2 compares favorably with existing tools, while offering superior throughput to most alternatives examined here, both for single and multi-threaded operations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13104-016-1900-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "AdapterRemoval v2: rapid adapter trimming, identification, and read merging", 
    "pagination": "88", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1a7b05e51f78de96b416b84aa6ac4e8f603f946f0d065abc66df6030db2a2fc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26868221"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13104-016-1900-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040653018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13104-016-1900-2", 
      "https://app.dimensions.ai/details/publication/pub.1040653018"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13104-016-1900-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13104-016-1900-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13104-016-1900-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13104-016-1900-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13104-016-1900-2'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      50 URIs      24 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13104-016-1900-2 schema:about N695ede0a5a2840818b7ed7e406b6be80
2 Nc1807cdf675d4c068f3658c226883c4d
3 Nd10b18c4532b4d6f83e3690193ab03f9
4 anzsrc-for:06
5 anzsrc-for:0604
6 schema:author N135fa72e4851495e978c7ccee24f1a50
7 schema:citation sg:pub.10.1007/978-1-61779-516-9_23
8 sg:pub.10.1038/nprot.2014.063
9 sg:pub.10.1038/nrg3935
10 sg:pub.10.1186/1471-2105-15-182
11 sg:pub.10.1186/1471-2105-16-s1-s2
12 sg:pub.10.1186/1756-0500-5-337
13 https://doi.org/10.1016/j.ygeno.2013.07.011
14 https://doi.org/10.1016/j.ymeth.2013.06.027
15 https://doi.org/10.1093/bioinformatics/btr507
16 https://doi.org/10.1093/bioinformatics/bts187
17 https://doi.org/10.1093/bioinformatics/bts563
18 https://doi.org/10.1093/bioinformatics/btt593
19 https://doi.org/10.1093/bioinformatics/btu170
20 https://doi.org/10.1093/nar/gku699
21 https://doi.org/10.1111/mec.12680
22 https://doi.org/10.14806/ej.17.1.200
23 https://doi.org/10.2174/1875036201307010001
24 https://doi.org/10.3390/biology1030895
25 schema:datePublished 2016-12
26 schema:datePublishedReg 2016-12-01
27 schema:description BACKGROUND: As high-throughput sequencing platforms produce longer and longer reads, sequences generated from short inserts, such as those obtained from fossil and degraded material, are increasingly expected to contain adapter sequences. Efficient adapter trimming algorithms are also needed to process the growing amount of data generated per sequencing run. FINDINGS: We introduce AdapterRemoval v2, a major revision of AdapterRemoval v1, which introduces (i) striking improvements in throughput, through the use of single instruction, multiple data (SIMD; SSE1 and SSE2) instructions and multi-threading support, (ii) the ability to handle datasets containing reads or read-pairs with different adapters or adapter pairs, (iii) simultaneous demultiplexing and adapter trimming, (iv) the ability to reconstruct adapter sequences from paired-end reads for poorly documented data sets, and (v) native gzip and bzip2 support. CONCLUSIONS: We show that AdapterRemoval v2 compares favorably with existing tools, while offering superior throughput to most alternatives examined here, both for single and multi-threaded operations.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N4edf4f07876c46869ed63244aa5ba523
32 Naee41fd4a9e04781bb51a40cb28edbf7
33 sg:journal.1039457
34 schema:name AdapterRemoval v2: rapid adapter trimming, identification, and read merging
35 schema:pagination 88
36 schema:productId N342fbbdb1a1445098b275de92588018c
37 N9eeca8049c4e466f838cd07d2b73e928
38 Nc3f1f456adfe4a1495a12bb051a7bba6
39 Nc9d5f93f0e094a66a6042dc2690c34f1
40 Nd4b70ed0d6c64bb8ae84185abdc5c9d3
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040653018
42 https://doi.org/10.1186/s13104-016-1900-2
43 schema:sdDatePublished 2019-04-11T10:16
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N5ab081330efc433eb8ae7076be998589
46 schema:url https://link.springer.com/10.1186%2Fs13104-016-1900-2
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N135fa72e4851495e978c7ccee24f1a50 rdf:first sg:person.0774220504.34
51 rdf:rest N480345df76fd49c6bc18b0e4c780cf96
52 N342fbbdb1a1445098b275de92588018c schema:name pubmed_id
53 schema:value 26868221
54 rdf:type schema:PropertyValue
55 N480345df76fd49c6bc18b0e4c780cf96 rdf:first sg:person.0635177211.38
56 rdf:rest N97586d9a4a1149dba9f3cba76b5263f4
57 N4edf4f07876c46869ed63244aa5ba523 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N5ab081330efc433eb8ae7076be998589 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N695ede0a5a2840818b7ed7e406b6be80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Algorithms
63 rdf:type schema:DefinedTerm
64 N97586d9a4a1149dba9f3cba76b5263f4 rdf:first sg:person.01201152047.48
65 rdf:rest rdf:nil
66 N9eeca8049c4e466f838cd07d2b73e928 schema:name readcube_id
67 schema:value c1a7b05e51f78de96b416b84aa6ac4e8f603f946f0d065abc66df6030db2a2fc
68 rdf:type schema:PropertyValue
69 Naee41fd4a9e04781bb51a40cb28edbf7 schema:volumeNumber 9
70 rdf:type schema:PublicationVolume
71 Nc1807cdf675d4c068f3658c226883c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name High-Throughput Nucleotide Sequencing
73 rdf:type schema:DefinedTerm
74 Nc3f1f456adfe4a1495a12bb051a7bba6 schema:name doi
75 schema:value 10.1186/s13104-016-1900-2
76 rdf:type schema:PropertyValue
77 Nc9d5f93f0e094a66a6042dc2690c34f1 schema:name dimensions_id
78 schema:value pub.1040653018
79 rdf:type schema:PropertyValue
80 Nd10b18c4532b4d6f83e3690193ab03f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Base Sequence
82 rdf:type schema:DefinedTerm
83 Nd4b70ed0d6c64bb8ae84185abdc5c9d3 schema:name nlm_unique_id
84 schema:value 101462768
85 rdf:type schema:PropertyValue
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
90 schema:name Genetics
91 rdf:type schema:DefinedTerm
92 sg:journal.1039457 schema:issn 1756-0500
93 schema:name BMC Research Notes
94 rdf:type schema:Periodical
95 sg:person.01201152047.48 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
96 schema:familyName Orlando
97 schema:givenName Ludovic
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201152047.48
99 rdf:type schema:Person
100 sg:person.0635177211.38 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
101 schema:familyName Lindgreen
102 schema:givenName Stinus
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635177211.38
104 rdf:type schema:Person
105 sg:person.0774220504.34 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
106 schema:familyName Schubert
107 schema:givenName Mikkel
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774220504.34
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-61779-516-9_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018322075
111 https://doi.org/10.1007/978-1-61779-516-9_23
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nprot.2014.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020179577
114 https://doi.org/10.1038/nprot.2014.063
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nrg3935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028996959
117 https://doi.org/10.1038/nrg3935
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/1471-2105-15-182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198285
120 https://doi.org/10.1186/1471-2105-15-182
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2105-16-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048032234
123 https://doi.org/10.1186/1471-2105-16-s1-s2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1756-0500-5-337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672942
126 https://doi.org/10.1186/1756-0500-5-337
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ygeno.2013.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011945276
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ymeth.2013.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047051
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/bioinformatics/btr507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031241489
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/bioinformatics/bts187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039045908
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/bioinformatics/bts563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025288251
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/bioinformatics/btt593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435278
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/nar/gku699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017404686
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/mec.12680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052203348
145 rdf:type schema:CreativeWork
146 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2174/1875036201307010001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069237740
149 rdf:type schema:CreativeWork
150 https://doi.org/10.3390/biology1030895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018168136
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
153 schema:name Carlsberg Research Laboratory, Gamle Carlsberg Vej 4-10, 1799, Copenhagen, Denmark
154 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350, Copenhagen, Denmark
155 Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark
156 Laboratoire AMIS, Université de Toulouse, University Paul Sabatier (UPS), CNRS UMR 5288, 37 Allées Jules Guesde, 31000, Toulouse, France
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...