Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Tara N Stuecker, Shanti Bramhacharya, Kelsey M Hodge-Hanson, Garret Suen, Jorge C Escalante-Semerena

ABSTRACT

BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo. RESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-α-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-α-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-α-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-α-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-α-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions. CONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-α-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-α-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-α-decarboxylases. More... »

PAGES

354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6

DOI

http://dx.doi.org/10.1186/s13104-015-1314-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045174906

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26276430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetyl Coenzyme A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Corynebacterium glutamicum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Precursors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamate Decarboxylase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoenzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Domains and Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salmonella enterica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Department of Biological Sciences, University of Arkansas, 850\u00a0W. Dickson St., SCEN 601, 72701, Fayettevile, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stuecker", 
        "givenName": "Tara N", 
        "id": "sg:person.0643711337.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643711337.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Microsoft Corporation, 7000 State Highway 161, 75039, Irving, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bramhacharya", 
        "givenName": "Shanti", 
        "id": "sg:person.01360134442.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360134442.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Department of Microbiology, University of Georgia, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodge-Hanson", 
        "givenName": "Kelsey M", 
        "id": "sg:person.01364357735.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364357735.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suen", 
        "givenName": "Garret", 
        "id": "sg:person.01047065756.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047065756.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Microbiology, University of Georgia, 212C, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escalante-Semerena", 
        "givenName": "Jorge C", 
        "id": "sg:person.01152475317.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152475317.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2012.08046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000837669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000846140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.00158-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-299257-5.50008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007771044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.3.595-600.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009667133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbn017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013887097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2015.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018951677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019858005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mbo3.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026671101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.abb.2004.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028131017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-244750-1.50015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032776709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0955-2863(96)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033895860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2013.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037380068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3230661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043370359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3230661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043370359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi301026c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055205385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/tx400183y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056299165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.14.4121-4130.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062723944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076734910", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078454982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080650531", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081949629", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082115987", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and \u03b2-alanine. The synthesis of \u03b2-alanine is catalyzed by L-aspartate-\u03b1-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo.\nRESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-\u03b1-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-\u03b1-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-\u03b1-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-\u03b1-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-\u03b1-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions.\nCONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-\u03b1-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-\u03b1-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-\u03b1-decarboxylases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13104-015-1314-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683702", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2516805", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-\u03b1-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain", 
    "pagination": "354", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d72efdf20c7dbaec18d5f488ccf3107e0d9730b81d3ee9a1bf20f7281b88a589"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26276430"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13104-015-1314-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045174906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13104-015-1314-6", 
      "https://app.dimensions.ai/details/publication/pub.1045174906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13104-015-1314-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      73 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13104-015-1314-6 schema:about N1432fb15646a4eac8f56aa080acfc4bd
2 N14619583047644199f9db9b43d5f6dee
3 N36c7b82fa4b84e0684e9d8db5e916601
4 N4a95bc464e6a4081b232cbe9b8c4a44a
5 N4e8efbf3735145d48def093b68135c8b
6 N4fe565a5a59644e4b62e57e1cfc9fe21
7 N533e5ce9b34f421593b49682bff9ed80
8 N878b3a5c5d3742afb917280fe9ea480c
9 N9f605618cad24938a9dca59ab8ca6655
10 Nc2afc573269d467ea7e3c7960d830d08
11 Nc530bb27e9bc4c649db354cd0c37af74
12 Nc6e3e41e64de4bd3a6224e6ea3b4b446
13 Nd7bce12b8b224af9a7a3686dcbf30360
14 Nd97b2c93995a43e7b24fb988c0e6ba6f
15 Nddea6d6efb394aa096266470bbd2598a
16 Nea202915d24946b193552a52ee525dd7
17 Nfb5b3f5a747e4f37bc96fd4be53e443f
18 Nfd73c05c6eeb4de48894f033abfa3f39
19 anzsrc-for:06
20 anzsrc-for:0601
21 schema:author Nb661fb4357f1449dbed1445779da2a3e
22 schema:citation https://app.dimensions.ai/details/publication/pub.1076734910
23 https://app.dimensions.ai/details/publication/pub.1078454982
24 https://app.dimensions.ai/details/publication/pub.1080650531
25 https://app.dimensions.ai/details/publication/pub.1081949629
26 https://app.dimensions.ai/details/publication/pub.1082115987
27 https://doi.org/10.1002/mbo3.34
28 https://doi.org/10.1016/0955-2863(96)00034-4
29 https://doi.org/10.1016/b978-0-12-244750-1.50015-4
30 https://doi.org/10.1016/b978-0-12-299257-5.50008-7
31 https://doi.org/10.1016/j.abb.2004.09.003
32 https://doi.org/10.1016/j.biochi.2013.12.018
33 https://doi.org/10.1016/j.chembiol.2015.03.017
34 https://doi.org/10.1016/s0022-2836(05)80360-2
35 https://doi.org/10.1021/bi301026c
36 https://doi.org/10.1021/tx400183y
37 https://doi.org/10.1042/bj3230661
38 https://doi.org/10.1093/bib/bbn017
39 https://doi.org/10.1093/bioinformatics/btl529
40 https://doi.org/10.1093/emboj/cdg575
41 https://doi.org/10.1093/molbev/msh119
42 https://doi.org/10.1093/nar/gkh340
43 https://doi.org/10.1093/nar/gkq399
44 https://doi.org/10.1111/j.1365-2958.2012.08046.x
45 https://doi.org/10.1128/jb.177.14.4121-4130.1995
46 https://doi.org/10.1128/jb.186.3.595-600.2004
47 https://doi.org/10.1128/mbio.00158-12
48 schema:datePublished 2015-12
49 schema:datePublishedReg 2015-12-01
50 schema:description BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo. RESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-α-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-α-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-α-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-α-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-α-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions. CONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-α-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-α-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-α-decarboxylases.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N660118c11dab4bcb806249eb2c15ca90
55 Nd24a1423731f4051bbc761cc35470594
56 sg:journal.1039457
57 schema:name Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain
58 schema:pagination 354
59 schema:productId N04b845532f7d48e8aedf63fc881143b0
60 N1c9e611265c6439c8606ab0294cb3c2b
61 N531fedae86564fb690d703f4e2ae6ee1
62 N639f464e68484f24bbe35c5b02ea9b7d
63 N8ffcafd1cbb44596ab8ba13609a3caca
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174906
65 https://doi.org/10.1186/s13104-015-1314-6
66 schema:sdDatePublished 2019-04-11T10:16
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nc26dd794f115441880bbe356d345d87c
69 schema:url https://link.springer.com/10.1186%2Fs13104-015-1314-6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N04b845532f7d48e8aedf63fc881143b0 schema:name dimensions_id
74 schema:value pub.1045174906
75 rdf:type schema:PropertyValue
76 N0c3ca467713c4dffa0217bb90e33829d rdf:first sg:person.01152475317.35
77 rdf:rest rdf:nil
78 N1432fb15646a4eac8f56aa080acfc4bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Salmonella enterica
80 rdf:type schema:DefinedTerm
81 N14619583047644199f9db9b43d5f6dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Models, Molecular
83 rdf:type schema:DefinedTerm
84 N1c9e611265c6439c8606ab0294cb3c2b schema:name nlm_unique_id
85 schema:value 101462768
86 rdf:type schema:PropertyValue
87 N36c7b82fa4b84e0684e9d8db5e916601 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Gene Expression
89 rdf:type schema:DefinedTerm
90 N4a95bc464e6a4081b232cbe9b8c4a44a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Enzyme Precursors
92 rdf:type schema:DefinedTerm
93 N4e8efbf3735145d48def093b68135c8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Sequence Homology, Amino Acid
95 rdf:type schema:DefinedTerm
96 N4fe565a5a59644e4b62e57e1cfc9fe21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Bacterial Proteins
98 rdf:type schema:DefinedTerm
99 N531fedae86564fb690d703f4e2ae6ee1 schema:name readcube_id
100 schema:value d72efdf20c7dbaec18d5f488ccf3107e0d9730b81d3ee9a1bf20f7281b88a589
101 rdf:type schema:PropertyValue
102 N533e5ce9b34f421593b49682bff9ed80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Corynebacterium glutamicum
104 rdf:type schema:DefinedTerm
105 N639f464e68484f24bbe35c5b02ea9b7d schema:name pubmed_id
106 schema:value 26276430
107 rdf:type schema:PropertyValue
108 N660118c11dab4bcb806249eb2c15ca90 schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 N8731aed27f094da6a87332dc8b192b78 rdf:first sg:person.01360134442.18
111 rdf:rest Nfe2f273a6e5448dfbdc7cc297c93fd25
112 N878b3a5c5d3742afb917280fe9ea480c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Protein Interaction Domains and Motifs
114 rdf:type schema:DefinedTerm
115 N8ffcafd1cbb44596ab8ba13609a3caca schema:name doi
116 schema:value 10.1186/s13104-015-1314-6
117 rdf:type schema:PropertyValue
118 N9f605618cad24938a9dca59ab8ca6655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Sequence Alignment
120 rdf:type schema:DefinedTerm
121 Nb661fb4357f1449dbed1445779da2a3e rdf:first sg:person.0643711337.08
122 rdf:rest N8731aed27f094da6a87332dc8b192b78
123 Nc26dd794f115441880bbe356d345d87c schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nc2afc573269d467ea7e3c7960d830d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Acetyl Coenzyme A
127 rdf:type schema:DefinedTerm
128 Nc530bb27e9bc4c649db354cd0c37af74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Escherichia coli
130 rdf:type schema:DefinedTerm
131 Nc6e3e41e64de4bd3a6224e6ea3b4b446 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Conserved Sequence
133 rdf:type schema:DefinedTerm
134 Nd24a1423731f4051bbc761cc35470594 schema:volumeNumber 8
135 rdf:type schema:PublicationVolume
136 Nd7bce12b8b224af9a7a3686dcbf30360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Databases, Factual
138 rdf:type schema:DefinedTerm
139 Nd7d3b0f636d4411d8131641b974ca981 rdf:first sg:person.01047065756.32
140 rdf:rest N0c3ca467713c4dffa0217bb90e33829d
141 Nd97b2c93995a43e7b24fb988c0e6ba6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Phylogeny
143 rdf:type schema:DefinedTerm
144 Nddea6d6efb394aa096266470bbd2598a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Isoenzymes
146 rdf:type schema:DefinedTerm
147 Nea202915d24946b193552a52ee525dd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Molecular Sequence Data
149 rdf:type schema:DefinedTerm
150 Nfb5b3f5a747e4f37bc96fd4be53e443f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Glutamate Decarboxylase
152 rdf:type schema:DefinedTerm
153 Nfd73c05c6eeb4de48894f033abfa3f39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Amino Acid Sequence
155 rdf:type schema:DefinedTerm
156 Nfe2f273a6e5448dfbdc7cc297c93fd25 rdf:first sg:person.01364357735.46
157 rdf:rest Nd7d3b0f636d4411d8131641b974ca981
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
162 schema:name Biochemistry and Cell Biology
163 rdf:type schema:DefinedTerm
164 sg:grant.2516805 http://pending.schema.org/fundedItem sg:pub.10.1186/s13104-015-1314-6
165 rdf:type schema:MonetaryGrant
166 sg:grant.2683702 http://pending.schema.org/fundedItem sg:pub.10.1186/s13104-015-1314-6
167 rdf:type schema:MonetaryGrant
168 sg:journal.1039457 schema:issn 1756-0500
169 schema:name BMC Research Notes
170 rdf:type schema:Periodical
171 sg:person.01047065756.32 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
172 schema:familyName Suen
173 schema:givenName Garret
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047065756.32
175 rdf:type schema:Person
176 sg:person.01152475317.35 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
177 schema:familyName Escalante-Semerena
178 schema:givenName Jorge C
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152475317.35
180 rdf:type schema:Person
181 sg:person.01360134442.18 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
182 schema:familyName Bramhacharya
183 schema:givenName Shanti
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360134442.18
185 rdf:type schema:Person
186 sg:person.01364357735.46 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
187 schema:familyName Hodge-Hanson
188 schema:givenName Kelsey M
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364357735.46
190 rdf:type schema:Person
191 sg:person.0643711337.08 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
192 schema:familyName Stuecker
193 schema:givenName Tara N
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643711337.08
195 rdf:type schema:Person
196 https://app.dimensions.ai/details/publication/pub.1076734910 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1078454982 schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1080650531 schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1081949629 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1082115987 schema:CreativeWork
201 https://doi.org/10.1002/mbo3.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026671101
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/0955-2863(96)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033895860
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/b978-0-12-244750-1.50015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032776709
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/b978-0-12-299257-5.50008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007771044
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.abb.2004.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028131017
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.biochi.2013.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037380068
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.chembiol.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018951677
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/bi301026c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055205385
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/tx400183y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056299165
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1042/bj3230661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043370359
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bib/bbn017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013887097
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/btl529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019858005
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/emboj/cdg575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425057
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/molbev/msh119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846140
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gkq399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387524
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1365-2958.2012.08046.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000837669
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/jb.177.14.4121-4130.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723944
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1128/jb.186.3.595-600.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009667133
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1128/mbio.00158-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006753856
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
244 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
247 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
248 Department of Microbiology, University of Georgia, 212C, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA
249 Department of Microbiology, University of Georgia, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
252 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
253 Department of Biological Sciences, University of Arkansas, 850 W. Dickson St., SCEN 601, 72701, Fayettevile, AR, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
256 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
257 Microsoft Corporation, 7000 State Highway 161, 75039, Irving, TX, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...