Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Tara N Stuecker, Shanti Bramhacharya, Kelsey M Hodge-Hanson, Garret Suen, Jorge C Escalante-Semerena

ABSTRACT

BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo. RESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-α-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-α-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-α-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-α-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-α-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions. CONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-α-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-α-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-α-decarboxylases. More... »

PAGES

354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6

DOI

http://dx.doi.org/10.1186/s13104-015-1314-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045174906

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26276430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetyl Coenzyme A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Corynebacterium glutamicum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Precursors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamate Decarboxylase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoenzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Domains and Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Salmonella enterica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Department of Biological Sciences, University of Arkansas, 850\u00a0W. Dickson St., SCEN 601, 72701, Fayettevile, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stuecker", 
        "givenName": "Tara N", 
        "id": "sg:person.0643711337.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643711337.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Microsoft Corporation, 7000 State Highway 161, 75039, Irving, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bramhacharya", 
        "givenName": "Shanti", 
        "id": "sg:person.01360134442.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360134442.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
            "Department of Microbiology, University of Georgia, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodge-Hanson", 
        "givenName": "Kelsey M", 
        "id": "sg:person.01364357735.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364357735.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suen", 
        "givenName": "Garret", 
        "id": "sg:person.01047065756.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047065756.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Microbiology, University of Georgia, 212C, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escalante-Semerena", 
        "givenName": "Jorge C", 
        "id": "sg:person.01152475317.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152475317.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2012.08046.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000837669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000846140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.00158-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-299257-5.50008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007771044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.3.595-600.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009667133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbn017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013887097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2015.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018951677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019858005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mbo3.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026671101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.abb.2004.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028131017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-244750-1.50015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032776709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0955-2863(96)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033895860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/cdg575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2013.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037380068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3230661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043370359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3230661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043370359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi301026c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055205385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/tx400183y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056299165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.14.4121-4130.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062723944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076734910", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078454982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080650531", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081949629", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082115987", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and \u03b2-alanine. The synthesis of \u03b2-alanine is catalyzed by L-aspartate-\u03b1-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo.\nRESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-\u03b1-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-\u03b1-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-\u03b1-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-\u03b1-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-\u03b1-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions.\nCONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-\u03b1-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-\u03b1-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-\u03b1-decarboxylases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13104-015-1314-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683702", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2516805", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-\u03b1-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain", 
    "pagination": "354", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d72efdf20c7dbaec18d5f488ccf3107e0d9730b81d3ee9a1bf20f7281b88a589"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26276430"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13104-015-1314-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045174906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13104-015-1314-6", 
      "https://app.dimensions.ai/details/publication/pub.1045174906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13104-015-1314-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13104-015-1314-6'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      73 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13104-015-1314-6 schema:about N11f8a1cd312240fa90f5c11af8232fbc
2 N1ed8bc13ff1a4f9e9683bc3eb49ec310
3 N2e79897541054601a112d89d7aeb2aca
4 N468d6d68f87246d1bdbf48d8cef420f4
5 N5be47806f0e34e2fa9bf652580b11716
6 N6c7a7353f4e14d28989e516a82f79624
7 N8709d473c2344df5ac89842b328e1838
8 N8f17c0836b264566b9303d473b64805a
9 Na0f95b9174764bcfa18db913ed488b4d
10 Na2c08f611e7642a69048f367fca37976
11 Naded0231fc38448c91237e7fee08c273
12 Nb4f651070cb14dd4946dde07789513d9
13 Nbdbb9449c70d4b639e8c290db5564145
14 Ncce267a1406c4071be4a6c38b47a5429
15 Nd301bb6e949747f5ba43b17f876fbb27
16 Nd8babfb574c24ca2a92fbdb5e9d8e5ec
17 Ne25e94bbfbeb4c8a8ba92dd11ee12bef
18 Nf9282c8370674204b5eb07b48d588555
19 anzsrc-for:06
20 anzsrc-for:0601
21 schema:author N776d65e492924813aefbf9615cc2acfb
22 schema:citation https://app.dimensions.ai/details/publication/pub.1076734910
23 https://app.dimensions.ai/details/publication/pub.1078454982
24 https://app.dimensions.ai/details/publication/pub.1080650531
25 https://app.dimensions.ai/details/publication/pub.1081949629
26 https://app.dimensions.ai/details/publication/pub.1082115987
27 https://doi.org/10.1002/mbo3.34
28 https://doi.org/10.1016/0955-2863(96)00034-4
29 https://doi.org/10.1016/b978-0-12-244750-1.50015-4
30 https://doi.org/10.1016/b978-0-12-299257-5.50008-7
31 https://doi.org/10.1016/j.abb.2004.09.003
32 https://doi.org/10.1016/j.biochi.2013.12.018
33 https://doi.org/10.1016/j.chembiol.2015.03.017
34 https://doi.org/10.1016/s0022-2836(05)80360-2
35 https://doi.org/10.1021/bi301026c
36 https://doi.org/10.1021/tx400183y
37 https://doi.org/10.1042/bj3230661
38 https://doi.org/10.1093/bib/bbn017
39 https://doi.org/10.1093/bioinformatics/btl529
40 https://doi.org/10.1093/emboj/cdg575
41 https://doi.org/10.1093/molbev/msh119
42 https://doi.org/10.1093/nar/gkh340
43 https://doi.org/10.1093/nar/gkq399
44 https://doi.org/10.1111/j.1365-2958.2012.08046.x
45 https://doi.org/10.1128/jb.177.14.4121-4130.1995
46 https://doi.org/10.1128/jb.186.3.595-600.2004
47 https://doi.org/10.1128/mbio.00158-12
48 schema:datePublished 2015-12
49 schema:datePublishedReg 2015-12-01
50 schema:description BACKGROUND: All organisms must synthesize the enzymatic cofactor coenzyme A (CoA) from the precursor pantothenate. Most bacteria can synthesize pantothenate de novo by the condensation of pantoate and β-alanine. The synthesis of β-alanine is catalyzed by L-aspartate-α-decarboxylase (PanD), a pyruvoyl enzyme that is initially synthesized as a zymogen (pro-PanD). Active PanD is generated by self-cleavage of pro-PanD at Gly24-Ser25 creating the active-site pyruvoyl moiety. In Salmonella enterica, this cleavage requires PanM, an acetyl-CoA sensor related to the Gcn5-like N-acetyltransferases. PanM does not acetylate pro-PanD, but the recent publication of the three-dimensional crystal structure of the PanM homologue PanZ in complex with the PanD zymogen of Escherichia coli provides validation to our predictions and provides a framework in which to further examine the cleavage mechanism. In contrast, PanD from bacteria lacking PanM efficiently cleaved in the absence of PanM in vivo. RESULTS: Using phylogenetic analyses combined with in vivo phenotypic investigations, we showed that two classes of bacterial L-aspartate-α-decarboxylases exist. This classification is based on their posttranslational activation by self-cleavage of its zymogen. Class I L-aspartate-α-decarboxylase zymogens require the acetyl-CoA sensor PanM to be cleaved into active PanD. This class is found exclusively in the Gammaproteobacteria. Class II L-aspartate-α-decarboxylase zymogens self cleave efficiently in the absence of PanM, and are found in a wide number of bacterial phyla. Several members of the Euryarchaeota and Crenarchaeota also contain Class II L-aspartate-α-decarboxylases. Phylogenetic and amino acid conservation analyses of PanM revealed a conserved region of PanM distinct from conserved regions found in related Gcn5-related acetyltransferase enzymes (Pfam00583). This conserved region represents a putative domain for interactions with L-aspartate-α-decarboxylase zymogens. This work may inform future biochemical and structural studies of pro-PanD-PanM interactions. CONCLUSIONS: Experimental results indicate that S. enterica and C. glutamicum L-aspartate-α-decarboxylases represent two different classes of homologues of these enzymes. Class I homologues require PanM for activation, while Class II self cleave in the absence of PanM. Computer modeling of conserved amino acids using structure coordinates of PanM and L-aspartate-α-decarboxylase available in the protein data bank (RCSB PDB) revealed a putative site of interactions, which may help generate models to help understand the molecular details of the self-cleavage mechanism of L-aspartate-α-decarboxylases.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N57280b141b1a421bb2075f965a60538d
55 N6b0e46346f3b46a4a3ccaf94612d3924
56 sg:journal.1039457
57 schema:name Phylogenetic and amino acid conservation analyses of bacterial l-aspartate-α-decarboxylase and of its zymogen-maturation protein reveal a putative interaction domain
58 schema:pagination 354
59 schema:productId N40e9e89f7c52437d9e3add7d081ac2d5
60 N64a1100a3d9847efb2830a513e55a800
61 Na61cf61d5b0f4b34b7315144e132feb8
62 Nb734b76d06004381a911a21e85cb148a
63 Ne792e56bd5424e0c8c48788d662b2834
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174906
65 https://doi.org/10.1186/s13104-015-1314-6
66 schema:sdDatePublished 2019-04-11T10:16
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N3de682eead6f40b7ac1bcfed10fc9a6e
69 schema:url https://link.springer.com/10.1186%2Fs13104-015-1314-6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N11f8a1cd312240fa90f5c11af8232fbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Sequence Alignment
75 rdf:type schema:DefinedTerm
76 N1ed8bc13ff1a4f9e9683bc3eb49ec310 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Glutamate Decarboxylase
78 rdf:type schema:DefinedTerm
79 N2e79897541054601a112d89d7aeb2aca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Gene Expression
81 rdf:type schema:DefinedTerm
82 N3ca225d2e2ab4354b7957c337c036b9f rdf:first sg:person.01360134442.18
83 rdf:rest Nb82518b064f842408b6a07a42f310461
84 N3de682eead6f40b7ac1bcfed10fc9a6e schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N40e9e89f7c52437d9e3add7d081ac2d5 schema:name pubmed_id
87 schema:value 26276430
88 rdf:type schema:PropertyValue
89 N468d6d68f87246d1bdbf48d8cef420f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Databases, Factual
91 rdf:type schema:DefinedTerm
92 N57280b141b1a421bb2075f965a60538d schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 N5be47806f0e34e2fa9bf652580b11716 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Molecular Sequence Data
96 rdf:type schema:DefinedTerm
97 N64a1100a3d9847efb2830a513e55a800 schema:name nlm_unique_id
98 schema:value 101462768
99 rdf:type schema:PropertyValue
100 N6b0e46346f3b46a4a3ccaf94612d3924 schema:volumeNumber 8
101 rdf:type schema:PublicationVolume
102 N6c7a7353f4e14d28989e516a82f79624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Conserved Sequence
104 rdf:type schema:DefinedTerm
105 N776d65e492924813aefbf9615cc2acfb rdf:first sg:person.0643711337.08
106 rdf:rest N3ca225d2e2ab4354b7957c337c036b9f
107 N8709d473c2344df5ac89842b328e1838 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Isoenzymes
109 rdf:type schema:DefinedTerm
110 N8f17c0836b264566b9303d473b64805a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Escherichia coli
112 rdf:type schema:DefinedTerm
113 N93be5c19eac04015837322626a7e13bc rdf:first sg:person.01152475317.35
114 rdf:rest rdf:nil
115 Na0f95b9174764bcfa18db913ed488b4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Phylogeny
117 rdf:type schema:DefinedTerm
118 Na2c08f611e7642a69048f367fca37976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Salmonella enterica
120 rdf:type schema:DefinedTerm
121 Na61cf61d5b0f4b34b7315144e132feb8 schema:name dimensions_id
122 schema:value pub.1045174906
123 rdf:type schema:PropertyValue
124 Naded0231fc38448c91237e7fee08c273 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Amino Acid Sequence
126 rdf:type schema:DefinedTerm
127 Nb4f651070cb14dd4946dde07789513d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Models, Molecular
129 rdf:type schema:DefinedTerm
130 Nb734b76d06004381a911a21e85cb148a schema:name readcube_id
131 schema:value d72efdf20c7dbaec18d5f488ccf3107e0d9730b81d3ee9a1bf20f7281b88a589
132 rdf:type schema:PropertyValue
133 Nb82518b064f842408b6a07a42f310461 rdf:first sg:person.01364357735.46
134 rdf:rest Nc64c4de2db6e4add8c454689f607c123
135 Nbdbb9449c70d4b639e8c290db5564145 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Acetyl Coenzyme A
137 rdf:type schema:DefinedTerm
138 Nc64c4de2db6e4add8c454689f607c123 rdf:first sg:person.01047065756.32
139 rdf:rest N93be5c19eac04015837322626a7e13bc
140 Ncce267a1406c4071be4a6c38b47a5429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Enzyme Precursors
142 rdf:type schema:DefinedTerm
143 Nd301bb6e949747f5ba43b17f876fbb27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Corynebacterium glutamicum
145 rdf:type schema:DefinedTerm
146 Nd8babfb574c24ca2a92fbdb5e9d8e5ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Sequence Homology, Amino Acid
148 rdf:type schema:DefinedTerm
149 Ne25e94bbfbeb4c8a8ba92dd11ee12bef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Bacterial Proteins
151 rdf:type schema:DefinedTerm
152 Ne792e56bd5424e0c8c48788d662b2834 schema:name doi
153 schema:value 10.1186/s13104-015-1314-6
154 rdf:type schema:PropertyValue
155 Nf9282c8370674204b5eb07b48d588555 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Protein Interaction Domains and Motifs
157 rdf:type schema:DefinedTerm
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
162 schema:name Biochemistry and Cell Biology
163 rdf:type schema:DefinedTerm
164 sg:grant.2516805 http://pending.schema.org/fundedItem sg:pub.10.1186/s13104-015-1314-6
165 rdf:type schema:MonetaryGrant
166 sg:grant.2683702 http://pending.schema.org/fundedItem sg:pub.10.1186/s13104-015-1314-6
167 rdf:type schema:MonetaryGrant
168 sg:journal.1039457 schema:issn 1756-0500
169 schema:name BMC Research Notes
170 rdf:type schema:Periodical
171 sg:person.01047065756.32 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
172 schema:familyName Suen
173 schema:givenName Garret
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047065756.32
175 rdf:type schema:Person
176 sg:person.01152475317.35 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
177 schema:familyName Escalante-Semerena
178 schema:givenName Jorge C
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152475317.35
180 rdf:type schema:Person
181 sg:person.01360134442.18 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
182 schema:familyName Bramhacharya
183 schema:givenName Shanti
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360134442.18
185 rdf:type schema:Person
186 sg:person.01364357735.46 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
187 schema:familyName Hodge-Hanson
188 schema:givenName Kelsey M
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364357735.46
190 rdf:type schema:Person
191 sg:person.0643711337.08 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
192 schema:familyName Stuecker
193 schema:givenName Tara N
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643711337.08
195 rdf:type schema:Person
196 https://app.dimensions.ai/details/publication/pub.1076734910 schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1078454982 schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1080650531 schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1081949629 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1082115987 schema:CreativeWork
201 https://doi.org/10.1002/mbo3.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026671101
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/0955-2863(96)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033895860
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/b978-0-12-244750-1.50015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032776709
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/b978-0-12-299257-5.50008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007771044
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.abb.2004.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028131017
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.biochi.2013.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037380068
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.chembiol.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018951677
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/bi301026c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055205385
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/tx400183y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056299165
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1042/bj3230661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043370359
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bib/bbn017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013887097
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/btl529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019858005
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/emboj/cdg575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425057
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/molbev/msh119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846140
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gkq399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387524
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1365-2958.2012.08046.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000837669
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/jb.177.14.4121-4130.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723944
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1128/jb.186.3.595-600.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009667133
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1128/mbio.00158-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006753856
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
244 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
247 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
248 Department of Microbiology, University of Georgia, 212C, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA
249 Department of Microbiology, University of Georgia, Biological Sciences Building, 120 Cedar Street, 30602, Athens, GA, USA
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
252 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
253 Department of Biological Sciences, University of Arkansas, 850 W. Dickson St., SCEN 601, 72701, Fayettevile, AR, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
256 schema:name Department of Bacteriology, University of Wisconsin-Madison, 53706, Madison, WI, USA
257 Microsoft Corporation, 7000 State Highway 161, 75039, Irving, TX, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...